Controlled Deep Reinforcement Learning for Optimized Slice Placement
- URL: http://arxiv.org/abs/2108.01544v1
- Date: Tue, 3 Aug 2021 14:54:00 GMT
- Title: Controlled Deep Reinforcement Learning for Optimized Slice Placement
- Authors: Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin,
Pierre Sens
- Abstract summary: We present a hybrid ML-heuristic approach that we name "Heuristically Assisted Deep Reinforcement Learning (HA-DRL)"
The proposed approach leverages recent works on Deep Reinforcement Learning (DRL) for slice placement and Virtual Network Embedding (VNE)
The evaluation results show that the proposed HA-DRL algorithm can accelerate the learning of an efficient slice placement policy.
- Score: 0.8459686722437155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid ML-heuristic approach that we name "Heuristically
Assisted Deep Reinforcement Learning (HA-DRL)" to solve the problem of Network
Slice Placement Optimization. The proposed approach leverages recent works on
Deep Reinforcement Learning (DRL) for slice placement and Virtual Network
Embedding (VNE) and uses a heuristic function to optimize the exploration of
the action space by giving priority to reliable actions indicated by an
efficient heuristic algorithm. The evaluation results show that the proposed
HA-DRL algorithm can accelerate the learning of an efficient slice placement
policy improving slice acceptance ratio when compared with state-of-the-art
approaches that are based only on reinforcement learning.
Related papers
- Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Deep Black-Box Reinforcement Learning with Movement Primitives [15.184283143878488]
We present a new algorithm for deep reinforcement learning (RL)
It is based on differentiable trust region layers, a successful on-policy deep RL algorithm.
We compare our ERL algorithm to state-of-the-art step-based algorithms in many complex simulated robotic control tasks.
arXiv Detail & Related papers (2022-10-18T06:34:52Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
We compare two Deep Reinforcement Learning algorithms: a pure DRL-based algorithm and a hybrid DRL as a hybrid DRL-heuristic algorithm.
The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL.
arXiv Detail & Related papers (2021-08-05T10:24:33Z) - On Multi-objective Policy Optimization as a Tool for Reinforcement
Learning: Case Studies in Offline RL and Finetuning [24.264618706734012]
We show how to develop novel and more effective deep reinforcement learning algorithms.
We focus on offline RL and finetuning as case studies.
We introduce Distillation of a Mixture of Experts (DiME)
We demonstrate that for offline RL, DiME leads to a simple new algorithm that outperforms state-of-the-art.
arXiv Detail & Related papers (2021-06-15T14:59:14Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Progressive extension of reinforcement learning action dimension for
asymmetric assembly tasks [7.4642148614421995]
In this paper, a progressive extension of action dimension (PEAD) mechanism is proposed to optimize the convergence of RL algorithms.
The results demonstrate the PEAD method will enhance the data-efficiency and time-efficiency of RL algorithms as well as increase the stable reward.
arXiv Detail & Related papers (2021-04-06T11:48:54Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.