論文の概要: Image-based Virtual Fitting Room
- arxiv url: http://arxiv.org/abs/2104.04104v1
- Date: Thu, 8 Apr 2021 22:53:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 21:58:39.773394
- Title: Image-based Virtual Fitting Room
- Title(参考訳): イメージベース仮想フィッティングルーム
- Authors: Zhiling Huang and Junwen Bu and Jie Chen
- Abstract要約: まずMask R-CNNを用いて、異なるファッションアイテムの領域を抽出し、選択したファッションアイテムのスタイルを変更するためにNeural Style Transferを用いた。
8つのモデルと最高のモデルは、68.72% mAP、0.2% ASDRで、定量的および定性的にベースラインモデルを大幅に上回った。
- 参考スコア(独自算出の注目度): 5.88473857873251
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Virtual fitting room is a challenging task yet useful feature for e-commerce
platforms and fashion designers. Existing works can only detect very few types
of fashion items. Besides they did poorly in changing the texture and style of
the selected fashion items. In this project, we propose a novel approach to
address this problem. We firstly used Mask R-CNN to find the regions of
different fashion items, and secondly used Neural Style Transfer to change the
style of the selected fashion items. The dataset we used is composed of images
from PaperDoll dataset and annotations provided by eBay's ModaNet. We trained 8
models and our best model massively outperformed baseline models both
quantitatively and qualitatively, with 68.72% mAP, 0.2% ASDR.
- Abstract(参考訳): バーチャルフィッティングルームは、Eコマースプラットフォームやファッションデザイナーにとって難しいが便利な機能だ。
既存の作品はごくわずかな種類のファッションアイテムしか検出できない。
また、選択したファッションアイテムのテクスチャやスタイルの変更も不十分であった。
本稿では,この問題に対処するための新しいアプローチを提案する。
まずMask R-CNNを用いて、異なるファッションアイテムの領域を抽出し、選択したファッションアイテムのスタイルを変更するためにNeural Style Transferを用いた。
私たちが使ったデータセットはPaperDollのデータセットとeBayのModaNetが提供するアノテーションのイメージで構成されています。
我々は8つのモデルと最良のモデルで、68.72%のmAP、0.2%のASDRで、定量と定性の両方で非常に優れたベースラインモデルを訓練した。
関連論文リスト
- MuseumMaker: Continual Style Customization without Catastrophic Forgetting [50.12727620780213]
本研究では,一組のカスタマイズスタイルを終末的に追従することで,画像の合成を可能にする方法であるMuseumMakerを提案する。
新しいカスタマイズスタイルに直面すると、新しい画像生成のためのトレーニングデータのスタイルを抽出し学習するスタイル蒸留損失モジュールを開発する。
これは、新しい訓練画像の内容による学習バイアスを最小限に抑え、少数ショット画像によって引き起こされる破滅的な過適合問題に対処することができる。
論文 参考訳(メタデータ) (2024-04-25T13:51:38Z) - FashionFail: Addressing Failure Cases in Fashion Object Detection and Segmentation [7.483981721542115]
FashionFailは、オブジェクトの検出とセグメンテーションのためのEコマースイメージを備えた新しいデータセットである。
分析の結果,Attribute-Mask R-CNN や Fashionformer など,主要なモデルの欠点が明らかになった。
本稿では,一般的な障害を緩和し,モデルロバスト性を改善するために,単純データ拡張を用いたベースラインアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-12T16:28:30Z) - The Impact of Background Removal on Performance of Neural Networks for Fashion Image Classification and Segmentation [3.408972648415128]
ファッション画像から背景を取り除き、データ品質を高め、モデル性能を向上させる。
背景除去は、過度に適合しない単純で浅いネットワークにおいて、ファッションデータに対して効果的に機能する。
モデルのスクラッチからトレーニングする場合、FashionStyle14データセットの分類において、最大5%の精度でモデル精度を向上させることができる。
論文 参考訳(メタデータ) (2023-08-18T18:18:47Z) - NeAT: Neural Artistic Tracing for Beautiful Style Transfer [29.38791171225834]
スタイル転送は、第2のターゲット画像の芸術的スタイルでソース画像の意味内容を再現するタスクである。
我々は、新しい最先端のフィードフォワードスタイル転送方式NeATを提案する。
我々はBBST-4Mを用いて、様々なスタイルにわたるNeATの一般化を改善し、測定する。
論文 参考訳(メタデータ) (2023-04-11T11:08:13Z) - MODIFY: Model-driven Face Stylization without Style Images [77.24793103549158]
既存の顔のスタイリング手法は、翻訳プロセス中に常にターゲット(スタイル)ドメインの存在を取得する。
そこで本研究では,MODel-drIven Face stYlization (MODIFY) と呼ばれる新たな手法を提案する。
複数の異なるデータセットに対する実験結果は、教師なし顔のスタイリングにおけるMODIFYの有効性を検証した。
論文 参考訳(メタデータ) (2023-03-17T08:35:17Z) - StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot
Learning [89.86971464234533]
Cross-Domain Few-Shot Learning (CD-FSL)は、最近登場したタスクで、異なるドメインにわたる数ショットの学習に対処している。
本稿では,モデルに依存しないメタスタイル逆アタック(StyleAdv)手法と,新しいスタイル逆アタック手法を提案する。
本手法は視覚的スタイルに対して徐々に頑健であり,新たなターゲットデータセットの一般化能力を高める。
論文 参考訳(メタデータ) (2023-02-18T11:54:37Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval [119.03470556503942]
クロスモーダルマッチング問題は通常、写真とスケッチのモダリティ間で共有されるセマンティックコンテンツを保存する共同埋め込み空間を学習することによって解決される。
効果的なモデルには、このスタイルの多様性を明確に説明する必要がある。
我々のモデルは、モデム間で共有されるセマンティックコンテンツだけでなく、目に見えないユーザースタイルにも適応できるので、モデルは真に不可知的です。
論文 参考訳(メタデータ) (2021-03-29T15:44:19Z) - Learning Diverse Fashion Collocation by Neural Graph Filtering [78.9188246136867]
本稿では,グラフニューラルネットワークを用いて,フレキシブルなファッションアイテムセットをモデル化する新しいファッションコロケーションフレームワークであるNeural Graph Filteringを提案する。
エッジベクトルに対称演算を適用することにより、このフレームワークは様々な入力/出力を許容し、それらの順序に不変である。
提案手法を,Polyvoreデータセット,Polyvore-Dデータセット,Amazon Fashionデータセットの3つの一般的なベンチマークで評価した。
論文 参考訳(メタデータ) (2020-03-11T16:17:08Z) - A Strong Baseline for Fashion Retrieval with Person Re-Identification
Models [0.0]
ファッション検索は、画像に含まれるファッションアイテムの正確なマッチングを見つけるのに難しいタスクである。
ファッション検索のためのシンプルなベースラインモデルを導入する。
Street2ShopとDeepFashionのデータセットで詳細な実験を行い、その結果を検証する。
論文 参考訳(メタデータ) (2020-03-09T12:50:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。