論文の概要: MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection
- arxiv url: http://arxiv.org/abs/2104.04289v1
- Date: Fri, 9 Apr 2021 10:20:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 14:11:50.743735
- Title: MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection
- Title(参考訳): mlf-sc: 異常検出のためのスパース符号化にマルチレイヤー機能を組み込む
- Authors: Ryuji Imamura, Kohei Azuma, Atsushi Hanamoto, and Atsunori Kanemura
- Abstract要約: 画像の異常は、カーペットの上の小さな穴から大きな汚れまで、様々なスケールで発生する。
広く使われている異常検出方法の1つであるスパースコーディング(sparse coding)は、画像のスパース表現に使用されるパッチサイズから外れた異常を扱う際に問題となる。
本稿では,マルチスケール機能をスパース符号化に取り入れ,異常検出の性能を向上させることを提案する。
- 参考スコア(独自算出の注目度): 2.2276675054266395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomalies in images occur in various scales from a small hole on a carpet to
a large stain. However, anomaly detection based on sparse coding, one of the
widely used anomaly detection methods, has an issue in dealing with anomalies
that are out of the patch size employed to sparsely represent images. A large
anomaly can be considered normal if seen in a small scale, but it is not easy
to determine a single scale (patch size) that works well for all images. Then,
we propose to incorporate multi-scale features to sparse coding and improve the
performance of anomaly detection. The proposed method, multi-layer feature
sparse coding (MLF-SC), employs a neural network for feature extraction, and
feature maps from intermediate layers of the network are given to sparse
coding, whereas the standard sparse-coding-based anomaly detection method
directly works on given images. We show that MLF-SC outperforms
state-of-the-art anomaly detection methods including those employing deep
learning. Our target data are the texture categories of the MVTec Anomaly
Detection (MVTec AD) dataset, which is a modern benchmark dataset consisting of
images from the real world. Our idea can be a simple and practical option to
deal with practical data.
- Abstract(参考訳): 画像の異常は、カーペットの上の小さな穴から大きな汚れまで、様々なスケールで発生する。
しかしながら、広く使用されている異常検出手法の一つであるスパース符号化に基づく異常検出は、画像のスパース表現に使用されるパッチサイズ外である異常を扱う際に問題となる。
大規模な異常は、小さなスケールで見ると正常と見なすことができるが、全ての画像でうまく機能する単一のスケール(パッチサイズ)を決定することは容易ではない。
そこで本研究では,符号化のスパース化と異常検出性能の向上を目的としたマルチスケール機能を提案する。
提案手法である多層特徴スパース符号化(mlf-sc)は,ニューラルネットワークを用いて特徴抽出を行い,ネットワークの中間層からの特徴マップをスパース符号化に適用する。
MLF-SCは深層学習を含む最先端の異常検出手法より優れていることを示す。
我々の目標は、現実世界の画像からなる最新のベンチマークデータセットであるMVTec Anomaly Detection (MVTec AD)データセットのテクスチャカテゴリである。
私たちのアイデアは、実用的なデータを扱うためのシンプルで実用的な選択肢です。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Continuous Memory Representation for Anomaly Detection [24.58611060347548]
CRADは「連続的」メモリ内の正常な特徴を表現するための新しい異常検出手法である。
MVTec ADデータセットを用いた評価では、CRADは、マルチクラス統一異常検出におけるエラーの65.0%を削減し、従来の最先端手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-02-28T12:38:44Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - A Prototype-Based Neural Network for Image Anomaly Detection and Localization [10.830337829732915]
本稿では,画像の異常検出と局所化のためのプロトタイプベースニューラルネットワークProtoADを提案する。
まず,自然画像に事前学習したディープネットワークにより,通常の画像のパッチの特徴を抽出する。
ProtoADは、推論速度の高い最先端の手法と比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-04T04:27:16Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Image Anomaly Detection by Aggregating Deep Pyramidal Representations [16.246831343527052]
異常検出は、データセット内で、ほとんどのデータと大きく異なるサンプルを特定することで構成される。
本稿では,複数のピラミッドレベルを持つ深層ニューラルネットワークを用いた画像異常検出に着目し,画像特徴を異なるスケールで解析する。
論文 参考訳(メタデータ) (2020-11-12T09:58:27Z) - Understanding Anomaly Detection with Deep Invertible Networks through
Hierarchies of Distributions and Features [4.25227087152716]
畳み込みネットワークは、任意の自然言語データセットでトレーニングされた場合、同様の低レベルの特徴分布を学習する。
inlier とoutlier の識別的特徴が高いレベルにある場合、異常検出は特に困難になる。
モデルバイアスとドメインが高レベルの差を検出する前に負の影響を除去する2つの方法を提案する。
論文 参考訳(メタデータ) (2020-06-18T20:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。