論文の概要: CropGym: a Reinforcement Learning Environment for Crop Management
- arxiv url: http://arxiv.org/abs/2104.04326v1
- Date: Fri, 9 Apr 2021 12:17:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 17:05:10.562896
- Title: CropGym: a Reinforcement Learning Environment for Crop Management
- Title(参考訳): CropGym: 作物管理のための強化学習環境
- Authors: Hiske Overweg, Herman N.C. Berghuijs, Ioannis N. Athanasiadis
- Abstract要約: 強化学習エージェントが受精管理ポリシーを学ぶことができるOpenAIジム環境を実装します。
私たちの環境では、Proximal Policy Optimizationアルゴリズムで訓練されたエージェントが、他のベースラインエージェントよりも環境負荷の低減に成功しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nitrogen fertilizers have a detrimental effect on the environment, which can
be reduced by optimizing fertilizer management strategies. We implement an
OpenAI Gym environment where a reinforcement learning agent can learn
fertilization management policies using process-based crop growth models and
identify policies with reduced environmental impact. In our environment, an
agent trained with the Proximal Policy Optimization algorithm is more
successful at reducing environmental impacts than the other baseline agents we
present.
- Abstract(参考訳): 窒素肥料は環境に有害な影響を及ぼし、肥料管理戦略を最適化することで削減することができる。
強化学習エージェントがプロセスベースの作物生育モデルを用いて受精管理方針を学習し、環境影響を低減した政策を識別できる、openaiジム環境を実現する。
我々の環境において, 近似政策最適化アルゴリズムを用いて訓練したエージェントは, 提案する他のベースラインエージェントよりも環境への影響を低減することに成功している。
関連論文リスト
- A Comparative Study of Deep Reinforcement Learning for Crop Production Management [13.123171643387668]
適応的な作物管理政策を開発するための有望なツールとして強化学習(RL)が登場している。
ジム-DSSATの作物モデル環境において, 作物管理, PPO, 深度Q-networks (DQN) に最も広く利用されているシミュレータの1つが, 有望な結果を示している。
本研究では,PPOとDQNを,体育DSSAT環境によって提供される3つのRLタスクの静的ベースラインポリシー(肥料化,灌水,混合管理)に対して評価した。
論文 参考訳(メタデータ) (2024-11-06T18:35:51Z) - AgGym: An agricultural biotic stress simulation environment for ultra-precision management planning [8.205412609306713]
本稿では, 現場における生物ストレスの拡散をモデル化するための, モジュラー, 作物, ストレスシミュレーションフレームワークであるAgGymを紹介する。
本稿では,AgGymを限られたデータでカスタマイズし,各種の生物ストレス条件下での収量分布をシミュレートできることを示す。
提案フレームワークは,生物ストレス管理のスケジュールを,機会的,規範的に基づく個人化された意思決定支援を実現する。
論文 参考訳(メタデータ) (2024-09-01T14:55:45Z) - Learning-based agricultural management in partially observable
environments subject to climate variability [5.5062239803516615]
農業経営は、作物の収量、経済的な利益性、環境の持続可能性において中心的な役割を担っている。
我々は、深層強化学習(DRL)とリカレントニューラルネットワーク(RNN)を統合する革新的なフレームワークを導入する。
本研究は,極度の気象条件下での新たな最適政策を得るために,エージェント再訓練の必要性を照らすものである。
論文 参考訳(メタデータ) (2024-01-02T16:18:53Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
エネルギーベースモデル(EBM)として構造化された行動空間における政策をモデル化するための多元的政策最適化(DPO)を提案する。
新しい強力な生成モデルであるGFlowNetは、効率よく多様なEMMベースのポリシーサンプリングとして導入されている。
ATSCとBattleベンチマークの実験では、DPOが驚くほど多様なポリシーを効率的に発見できることが示されている。
論文 参考訳(メタデータ) (2023-02-23T10:48:09Z) - Stateful active facilitator: Coordination and Environmental
Heterogeneity in Cooperative Multi-Agent Reinforcement Learning [71.53769213321202]
環境の調整レベルと不均一度の概念を定式化する。
異なるMARLアプローチの実証評価を容易にするマルチエージェント環境のスイートであるHECOGridを提案する。
本研究では,エージェントが高配向環境と高配向環境において効率的に作業することを可能にする訓練分散実行学習手法を提案する。
論文 参考訳(メタデータ) (2022-10-04T18:17:01Z) - Optimizing Crop Management with Reinforcement Learning and Imitation
Learning [9.69704937572711]
我々は,Nの施肥と灌水を,強化学習(RL),模倣学習(IL),作物シミュレーションを通じて同時に最適化するインテリジェントな作物管理システムを提案する。
フロリダ州のトウモロコシを用いたケーススタディの実験を行い,シミュレーションにおけるトウモロコシ管理ガイドラインとの比較を行った。
完全かつ部分的な観察の下で訓練された政策は、より良い結果をもたらす。その結果、より利益が上がり、環境への影響も小さくなる。
論文 参考訳(メタデータ) (2022-09-20T20:48:52Z) - Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop
Simulations [11.576438685465797]
窒素 (N) 管理は土壌の肥大化と作物生産の維持に重要であり, 負の環境影響を最小限に抑えるが, 最適化は困難である。
本稿では,深部強化学習(RL)を用いた知的N管理システムと農業技術移転意思決定支援システム(DSSAT)を用いた作物シミュレーションを提案する。
次に、シミュレーションされた作物環境とRLエージェントとの日々のインタラクションを可能にするGym-DSSATインタフェースと、Q-networkとソフトアクタ-クリティックアルゴリズムを用いて管理ポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-04-21T20:26:41Z) - Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design [121.73425076217471]
本研究では,未知のパラメータを持つ環境を提供するUnsupervised Environment Design (UED)を提案する。
プロタゴニスト・アンタゴニストによるレグレト環境デザイン(PAIRED)と呼ぶ。
実験により, PAIREDは複雑な環境の自然なカリキュラムを生産し, PAIREDエージェントは, 高度に新規な環境での試験において, 高いゼロショット転送性能が得られることを示した。
論文 参考訳(メタデータ) (2020-12-03T17:37:01Z) - Environment Shaping in Reinforcement Learning using State Abstraction [63.444831173608605]
状態抽象化を用いた環境形成の新しい枠組みを提案する。
私たちのキーとなるアイデアは、ノイズの多い信号で環境の大きな状態空間を抽象空間に圧縮することです。
エージェントの方針は, 形状の環境において学習し, 元の環境において, ほぼ最適動作を保っていることを示す。
論文 参考訳(メタデータ) (2020-06-23T17:00:22Z) - Ecological Reinforcement Learning [76.9893572776141]
このような条件下での学習を容易にする環境特性について検討する。
環境の特性が強化学習エージェントのパフォーマンスにどのように影響するかを理解することは、学習を魅力的にする方法でタスクを構造化するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-22T17:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。