論文の概要: A Comparative Study of Deep Reinforcement Learning for Crop Production Management
- arxiv url: http://arxiv.org/abs/2411.04106v1
- Date: Wed, 06 Nov 2024 18:35:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:21:59.313440
- Title: A Comparative Study of Deep Reinforcement Learning for Crop Production Management
- Title(参考訳): 作物生産管理における深層強化学習の比較研究
- Authors: Joseph Balderas, Dong Chen, Yanbo Huang, Li Wang, Ren-Cang Li,
- Abstract要約: 適応的な作物管理政策を開発するための有望なツールとして強化学習(RL)が登場している。
ジム-DSSATの作物モデル環境において, 作物管理, PPO, 深度Q-networks (DQN) に最も広く利用されているシミュレータの1つが, 有望な結果を示している。
本研究では,PPOとDQNを,体育DSSAT環境によって提供される3つのRLタスクの静的ベースラインポリシー(肥料化,灌水,混合管理)に対して評価した。
- 参考スコア(独自算出の注目度): 13.123171643387668
- License:
- Abstract: Crop production management is essential for optimizing yield and minimizing a field's environmental impact to crop fields, yet it remains challenging due to the complex and stochastic processes involved. Recently, researchers have turned to machine learning to address these complexities. Specifically, reinforcement learning (RL), a cutting-edge approach designed to learn optimal decision-making strategies through trial and error in dynamic environments, has emerged as a promising tool for developing adaptive crop management policies. RL models aim to optimize long-term rewards by continuously interacting with the environment, making them well-suited for tackling the uncertainties and variability inherent in crop management. Studies have shown that RL can generate crop management policies that compete with, and even outperform, expert-designed policies within simulation-based crop models. In the gym-DSSAT crop model environment, one of the most widely used simulators for crop management, proximal policy optimization (PPO) and deep Q-networks (DQN) have shown promising results. However, these methods have not yet been systematically evaluated under identical conditions. In this study, we evaluated PPO and DQN against static baseline policies across three different RL tasks, fertilization, irrigation, and mixed management, provided by the gym-DSSAT environment. To ensure a fair comparison, we used consistent default parameters, identical reward functions, and the same environment settings. Our results indicate that PPO outperforms DQN in fertilization and irrigation tasks, while DQN excels in the mixed management task. This comparative analysis provides critical insights into the strengths and limitations of each approach, advancing the development of more effective RL-based crop management strategies.
- Abstract(参考訳): 作物生産管理は、収穫量を最適化し、畑の環境への影響を最小限にするために不可欠であるが、複雑で確率的なプロセスが関与しているため、依然として困難である。
近年、研究者たちはこれらの複雑さに対処するために機械学習に目を向けている。
具体的には、動的環境における試行錯誤を通じて最適な意思決定戦略を学習するための最先端アプローチである強化学習(RL)が、適応的な作物管理政策を開発するための有望なツールとして登場した。
RLモデルは、環境との継続的な相互作用によって長期的な報酬を最適化することを目的としており、作物管理に固有の不確実性と変動性に取り組むのに適している。
研究によると、RLはシミュレーションベースの作物モデルの中で、専門家が設計した政策と競合し、さらに優れる作物管理ポリシーを生成することができる。
ジム-DSSATの作物モデル環境において, 作物管理, PPO, 深度Q-networks (DQN) に最も広く利用されているシミュレータの1つが, 有望な結果を示している。
しかし、これらの手法は同一条件下で体系的に評価されていない。
本研究では,PPOとDQNを,体育DSSAT環境によって提供される3つのRLタスクの静的ベースラインポリシー(肥料化,灌水,混合管理)に対して評価した。
公平な比較を保証するため、一貫性のあるデフォルトパラメータ、同じ報酬関数、同じ環境設定を使用しました。
以上の結果から,PPOはDQNを,DQNはDQNを,DQNは混合管理タスクで優れていた。
この比較分析は、それぞれのアプローチの強みと限界について重要な洞察を与え、より効果的なRLベースの作物管理戦略の開発を促進する。
関連論文リスト
- Learning-based agricultural management in partially observable
environments subject to climate variability [5.5062239803516615]
農業経営は、作物の収量、経済的な利益性、環境の持続可能性において中心的な役割を担っている。
我々は、深層強化学習(DRL)とリカレントニューラルネットワーク(RNN)を統合する革新的なフレームワークを導入する。
本研究は,極度の気象条件下での新たな最適政策を得るために,エージェント再訓練の必要性を照らすものである。
論文 参考訳(メタデータ) (2024-01-02T16:18:53Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Theoretically Guaranteed Policy Improvement Distilled from Model-Based
Planning [64.10794426777493]
モデルベース強化学習(RL)は、様々な連続制御タスクにおいて顕著な成功を収めた。
近年のプラクティスでは、最適化されたアクションシーケンスをトレーニングフェーズ中にRLポリシーに蒸留する傾向にある。
我々は,モデルに基づく計画から政策への蒸留アプローチを開発する。
論文 参考訳(メタデータ) (2023-07-24T16:52:31Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
エネルギーベースモデル(EBM)として構造化された行動空間における政策をモデル化するための多元的政策最適化(DPO)を提案する。
新しい強力な生成モデルであるGFlowNetは、効率よく多様なEMMベースのポリシーサンプリングとして導入されている。
ATSCとBattleベンチマークの実験では、DPOが驚くほど多様なポリシーを効率的に発見できることが示されている。
論文 参考訳(メタデータ) (2023-02-23T10:48:09Z) - A SWAT-based Reinforcement Learning Framework for Crop Management [0.0]
土壌・水質評価ツール(SWAT)の力学を利用した強化学習(RL)環境を導入する。
これにより、フル成長の季節に配備されるはずの時間と資源が大幅に節約される。
我々は,標準的な農業慣行や最先端のRLアルゴリズムに通知された経営戦略に従って,様々な意思決定エージェントを開発・ベンチマークすることで,フレームワークの有用性を実証する。
論文 参考訳(メタデータ) (2023-02-10T00:24:22Z) - Optimizing Crop Management with Reinforcement Learning and Imitation
Learning [9.69704937572711]
我々は,Nの施肥と灌水を,強化学習(RL),模倣学習(IL),作物シミュレーションを通じて同時に最適化するインテリジェントな作物管理システムを提案する。
フロリダ州のトウモロコシを用いたケーススタディの実験を行い,シミュレーションにおけるトウモロコシ管理ガイドラインとの比較を行った。
完全かつ部分的な観察の下で訓練された政策は、より良い結果をもたらす。その結果、より利益が上がり、環境への影響も小さくなる。
論文 参考訳(メタデータ) (2022-09-20T20:48:52Z) - Risk-averse Stochastic Optimization for Farm Management Practices and
Cultivar Selection Under Uncertainty [8.427937898153779]
目的プログラミング関数における条件付き値-リスクを用いた不確実性の下で最適化フレームワークを開発する。
ケーススタディとして、USコーンベルトの25箇所に作物モデルを構築しました。
その結果,提案モデルが気象と最適決定との間に有意な関係を生じさせることが示唆された。
論文 参考訳(メタデータ) (2022-07-17T01:14:43Z) - Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop
Simulations [11.576438685465797]
窒素 (N) 管理は土壌の肥大化と作物生産の維持に重要であり, 負の環境影響を最小限に抑えるが, 最適化は困難である。
本稿では,深部強化学習(RL)を用いた知的N管理システムと農業技術移転意思決定支援システム(DSSAT)を用いた作物シミュレーションを提案する。
次に、シミュレーションされた作物環境とRLエージェントとの日々のインタラクションを可能にするGym-DSSATインタフェースと、Q-networkとソフトアクタ-クリティックアルゴリズムを用いて管理ポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-04-21T20:26:41Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
課題の難易度について,環境にとらわれない,アルゴリズムにとらわれない2つの定量的指標を提案する。
これらの指標は、様々な代替案よりも、正規化タスク可解性スコアとの相関が高いことを示す。
これらのメトリクスは、鍵設計パラメータの高速かつ計算効率の良い最適化にも使用できる。
論文 参考訳(メタデータ) (2021-03-23T17:49:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。