Non-Destructive Zero-Knowledge Proofs on Quantum States, and Multi-Party
Generation of Authorized Hidden GHZ States
- URL: http://arxiv.org/abs/2104.04742v3
- Date: Tue, 17 Jan 2023 12:36:47 GMT
- Title: Non-Destructive Zero-Knowledge Proofs on Quantum States, and Multi-Party
Generation of Authorized Hidden GHZ States
- Authors: L\'eo Colisson and Fr\'ed\'eric Grosshans and Elham Kashefi
- Abstract summary: We provide a protocol to prove advanced properties on a received quantum state non-destructively and non-interactively.
We show how to create a multi-qubits state from a single superposition.
We generalize these results to a multi-party setting and prove that multiple parties can anonymously distribute a GHZ state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the first generalization of the famous Non-Interactive
Zero-Knowledge (NIZK) proofs to quantum languages (NIZKoQS) and we provide a
protocol to prove advanced properties on a received quantum state
non-destructively and non-interactively (a single message being sent from the
prover to the verifier).
In our second orthogonal contribution, we improve the costly Remote State
Preparation protocols [CCKW18,CCKW19,GV19] that can classically fake a quantum
channel (this is at the heart of our NIZKoQS protocol) by showing how to create
a multi-qubits state from a single superposition.
Finally, we generalize these results to a multi-party setting and prove that
multiple parties can anonymously distribute a GHZ state in such a way that only
participants knowing a secret credential can share this state, which could have
applications to quantum anonymous transmission, quantum secret sharing, quantum
onion routing and more.
Related papers
- Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Semiquantum proxy blind signature based on quantum teleportation [12.725520944579554]
We propose a novel semiquantum proxy blind signature scheme with quantum teleportation based on X states.
Our protocol not only has complete blindness, unforgeability, non-repudiation and but also can resist the attack behavior from an eavesdropper.
arXiv Detail & Related papers (2023-10-30T07:56:29Z) - Oblivious Transfer from Zero-Knowledge Proofs, or How to Achieve
Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge Proofs on Quantum
States [0.0]
We turn any classical Zero-Knowledge (ZK) protocol into a composable (quantum) oblivious transfer (OT) protocol.
We provide the first round-optimal (2-message) quantum OT protocol secure in the random oracle model.
At the heart of our construction lies a new method that allows us to prove properties on a received quantum state without revealing additional information.
arXiv Detail & Related papers (2023-03-02T18:38:15Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Commitments to Quantum States [11.217084610985674]
A commitment to quantum messages is binding if, after the commit phase, the committed state is hidden from the sender's view.
We show that hiding quantum state commitments (QSCs) are implied by any commitment scheme for classical messages.
Commitments to quantum states open the door to many new cryptographic possibilities.
arXiv Detail & Related papers (2022-10-11T04:34:36Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Nontraditional Deterministic Remote State Preparation Using a
Non-Maximally Entangled Channel without Additional Quantum Resources [10.351739012146378]
We have developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states.
With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels.
arXiv Detail & Related papers (2022-03-16T08:59:49Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entangled state generation via quantum walks with multiple coins [2.471925498075058]
Entanglement swapping provides an efficient method to generate entanglement in quantum communication protocols.
We propose a novel scheme to generate entangled state including two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ state between several designate parties via the model of quantum walks with multiple coins.
arXiv Detail & Related papers (2020-11-03T11:39:40Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.