Latent Code-Based Fusion: A Volterra Neural Network Approach
- URL: http://arxiv.org/abs/2104.04829v1
- Date: Sat, 10 Apr 2021 18:29:01 GMT
- Title: Latent Code-Based Fusion: A Volterra Neural Network Approach
- Authors: Sally Ghanem, Siddharth Roheda, and Hamid Krim
- Abstract summary: We propose a deep structure encoder using the recently introduced Volterra Neural Networks (VNNs)
We show that the proposed approach demonstrates a much-improved sample complexity over CNN-based auto-encoder with a superb robust classification performance.
- Score: 21.25021807184103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deep structure encoder using the recently introduced Volterra
Neural Networks (VNNs) to seek a latent representation of multi-modal data
whose features are jointly captured by a union of subspaces. The so-called
self-representation embedding of the latent codes leads to a simplified fusion
which is driven by a similarly constructed decoding. The Volterra Filter
architecture achieved reduction in parameter complexity is primarily due to
controlled non-linearities being introduced by the higher-order convolutions in
contrast to generalized activation functions. Experimental results on two
different datasets have shown a significant improvement in the clustering
performance for VNNs auto-encoder over conventional Convolutional Neural
Networks (CNNs) auto-encoder. In addition, we also show that the proposed
approach demonstrates a much-improved sample complexity over CNN-based
auto-encoder with a superb robust classification performance.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth [24.897377434844266]
We propose a novel structure and training strategy for monocular depth estimation.
We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder.
Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2.
arXiv Detail & Related papers (2022-01-19T06:37:21Z) - Deep clustering with fusion autoencoder [0.0]
Deep clustering (DC) models capitalize on autoencoders to learn intrinsic features which facilitate the clustering process in consequence.
In this paper, a novel DC method is proposed to address this issue. Specifically, the generative adversarial network and VAE are coalesced into a new autoencoder called fusion autoencoder (FAE)
arXiv Detail & Related papers (2022-01-11T07:38:03Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - Faster Convergence in Deep-Predictive-Coding Networks to Learn Deeper
Representations [12.716429755564821]
Deep-predictive-coding networks (DPCNs) are hierarchical, generative models that rely on feed-forward and feed-back connections.
A crucial element of DPCNs is a forward-backward inference procedure to uncover sparse states of a dynamic model.
We propose an optimization strategy, with better empirical and theoretical convergence, based on accelerated proximal gradients.
arXiv Detail & Related papers (2021-01-18T02:30:13Z) - Sparse aNETT for Solving Inverse Problems with Deep Learning [2.5234156040689237]
We propose a sparse reconstruction framework (aNETT) for solving inverse problems.
We train an autoencoder network $D circ E$ with $E$ acting as a nonlinear sparsifying transform.
Numerical results are presented for sparse view CT.
arXiv Detail & Related papers (2020-04-20T18:43:13Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
We propose a Volterra filter-inspired Network architecture to reduce the complexity of Convolutional Neural Networks.
We show an efficient parallel implementation of this Volterra Neural Network (VNN) along with its remarkable performance.
The proposed approach is evaluated on UCF-101 and HMDB-51 datasets for action recognition, and is shown to outperform state of the art CNN approaches.
arXiv Detail & Related papers (2019-10-21T19:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.