Sparse aNETT for Solving Inverse Problems with Deep Learning
- URL: http://arxiv.org/abs/2004.09565v1
- Date: Mon, 20 Apr 2020 18:43:13 GMT
- Title: Sparse aNETT for Solving Inverse Problems with Deep Learning
- Authors: Daniel Obmann, Linh Nguyen, Johannes Schwab, Markus Haltmeier
- Abstract summary: We propose a sparse reconstruction framework (aNETT) for solving inverse problems.
We train an autoencoder network $D circ E$ with $E$ acting as a nonlinear sparsifying transform.
Numerical results are presented for sparse view CT.
- Score: 2.5234156040689237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a sparse reconstruction framework (aNETT) for solving inverse
problems. Opposed to existing sparse reconstruction techniques that are based
on linear sparsifying transforms, we train an autoencoder network $D \circ E$
with $E$ acting as a nonlinear sparsifying transform and minimize a Tikhonov
functional with learned regularizer formed by the $\ell^q$-norm of the encoder
coefficients and a penalty for the distance to the data manifold. We propose a
strategy for training an autoencoder based on a sample set of the underlying
image class such that the autoencoder is independent of the forward operator
and is subsequently adapted to the specific forward model. Numerical results
are presented for sparse view CT, which clearly demonstrate the feasibility,
robustness and the improved generalization capability and stability of aNETT
over post-processing networks.
Related papers
- MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Iterative Reweighted Least Squares Networks With Convergence Guarantees
for Solving Inverse Imaging Problems [12.487990897680422]
We present a novel optimization strategy for image reconstruction tasks under analysis-based image regularization.
We parameterize such regularizers using potential functions that correspond to weighted extensions of the $ell_pp$-vector and $mathcalS_pp$ Schatten-matrix quasi-norms.
We show that thanks to the convergence guarantees of our proposed minimization strategy, such optimization can be successfully performed with a memory-efficient implicit back-propagation scheme.
arXiv Detail & Related papers (2023-08-10T17:59:46Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Deep Neural Networks are Surprisingly Reversible: A Baseline for
Zero-Shot Inversion [90.65667807498086]
This paper presents a zero-shot direct model inversion framework that recovers the input to the trained model given only the internal representation.
We empirically show that modern classification models on ImageNet can, surprisingly, be inverted, allowing an approximate recovery of the original 224x224px images from a representation after more than 20 layers.
arXiv Detail & Related papers (2021-07-13T18:01:43Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
We propose a deep structure encoder using the recently introduced Volterra Neural Networks (VNNs)
We show that the proposed approach demonstrates a much-improved sample complexity over CNN-based auto-encoder with a superb robust classification performance.
arXiv Detail & Related papers (2021-04-10T18:29:01Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.