Towards a Collective Agenda on AI for Earth Science Data Analysis
- URL: http://arxiv.org/abs/2104.05107v1
- Date: Sun, 11 Apr 2021 20:54:44 GMT
- Title: Towards a Collective Agenda on AI for Earth Science Data Analysis
- Authors: Devis Tuia, Ribana Roscher, Jan Dirk Wegner, Nathan Jacobs, Xiao Xiang
Zhu, Gustau Camps-Valls
- Abstract summary: We aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.
In our declared agenda for AI on Earth sciences, we aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.
- Score: 39.78763440312085
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the last years we have witnessed the fields of geosciences and remote
sensing and artificial intelligence to become closer. Thanks to both the
massive availability of observational data, improved simulations, and
algorithmic advances, these disciplines have found common objectives and
challenges to advance the modeling and understanding of the Earth system.
Despite such great opportunities, we also observed a worrying tendency to
remain in disciplinary comfort zones applying recent advances from artificial
intelligence on well resolved remote sensing problems. Here we take a position
on research directions where we think the interface between these fields will
have the most impact and become potential game changers. In our declared agenda
for AI on Earth sciences, we aim to inspire researchers, especially the younger
generations, to tackle these challenges for a real advance of remote sensing
and the geosciences.
Related papers
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - GeoAI in Social Science [0.9527350779226282]
GeoAI, or geospatial artificial intelligence, is an exciting new area that leverages artificial intelligence (AI), geospatial big data, and massive computing power to solve problems with high automation and intelligence.
This paper reviews the progress of AI in social science research, highlighting important advancements in using GeoAI to fill critical data and knowledge gaps.
arXiv Detail & Related papers (2023-12-19T20:23:18Z) - Deep Learning for Spatiotemporal Big Data: A Vision on Opportunities and
Challenges [4.497634148674422]
Intemporal big data can foster new opportunities to solve problems that have not been possible before.
The distinctive characteristics of big data pose new challenges for deep learning technologies.
arXiv Detail & Related papers (2023-10-30T19:12:51Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
New area of research known as AI for science (AI4Science)
Areas aim at understanding the physical world from subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales.
Key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods.
arXiv Detail & Related papers (2023-07-17T12:14:14Z) - Philosophical Foundations of GeoAI: Exploring Sustainability, Diversity,
and Bias in GeoAI and Spatial Data Science [1.0152838128195467]
This chapter presents some of the fundamental assumptions and principles that could form the philosophical foundation of GeoAI and spatial data science.
It highlights themes such as sustainability, bias in training data, diversity in schema knowledge, and the (potential lack of) neutrality of GeoAI systems from a unifying ethical perspective.
arXiv Detail & Related papers (2023-03-27T14:01:22Z) - AI Security for Geoscience and Remote Sensing: Challenges and Future
Trends [16.001238774325333]
This paper reviews the current development of AI security in the geoscience and remote sensing field.
It covers the following five important aspects: adversarial attack, backdoor attack, federated learning, uncertainty and explainability.
To the best of the authors' knowledge, this paper is the first attempt to provide a systematic review of AI security-related research in the geoscience and RS community.
arXiv Detail & Related papers (2022-12-19T10:54:51Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial
Intelligence Research [4.723592249469651]
In this article, we revisit and discuss the state of GeoAI open research directions.
The workshop series has fostered nexus for geoscientists, computer scientists, engineers, entrepreneurs, and decision-makers.
arXiv Detail & Related papers (2022-10-20T18:02:17Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.