StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision
- URL: http://arxiv.org/abs/2104.05289v2
- Date: Tue, 13 Apr 2021 06:47:43 GMT
- Title: StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision
- Authors: Yang Hong, Juyong Zhang, Boyi Jiang, Yudong Guo, Ligang Liu and Hujun
Bao
- Abstract summary: We propose StereoPIFu, which integrates the geometric constraints of stereo vision with implicit function representation of PIFu, to recover the 3D shape of the clothed human.
Compared with previous works, our StereoPIFu significantly improves the robustness, completeness, and accuracy of the clothed human reconstruction.
- Score: 54.920605385622274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose StereoPIFu, which integrates the geometric
constraints of stereo vision with implicit function representation of PIFu, to
recover the 3D shape of the clothed human from a pair of low-cost rectified
images. First, we introduce the effective voxel-aligned features from a stereo
vision-based network to enable depth-aware reconstruction. Moreover, the novel
relative z-offset is employed to associate predicted high-fidelity human depth
and occupancy inference, which helps restore fine-level surface details.
Second, a network structure that fully utilizes the geometry information from
the stereo images is designed to improve the human body reconstruction quality.
Consequently, our StereoPIFu can naturally infer the human body's spatial
location in camera space and maintain the correct relative position of
different parts of the human body, which enables our method to capture human
performance. Compared with previous works, our StereoPIFu significantly
improves the robustness, completeness, and accuracy of the clothed human
reconstruction, which is demonstrated by extensive experimental results.
Related papers
- SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion [35.73448283467723]
SiTH is a novel pipeline that integrates an image-conditioned diffusion model into a 3D mesh reconstruction workflow.
We employ a powerful generative diffusion model to hallucinate unseen back-view appearance based on the input images.
For the latter, we leverage skinned body meshes as guidance to recover full-body texture meshes from the input and back-view images.
arXiv Detail & Related papers (2023-11-27T14:22:07Z) - Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh
Reconstruction [66.10717041384625]
Zolly is the first 3DHMR method focusing on perspective-distorted images.
We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body.
We extend two real-world datasets tailored for this task, all containing perspective-distorted human images.
arXiv Detail & Related papers (2023-03-24T04:22:41Z) - Refining 3D Human Texture Estimation from a Single Image [3.8761064607384195]
Estimating 3D human texture from a single image is essential in graphics and vision.
We propose a framework that adaptively samples the input by a deformable convolution where offsets are learned via a deep neural network.
arXiv Detail & Related papers (2023-03-06T19:53:50Z) - ReFu: Refine and Fuse the Unobserved View for Detail-Preserving
Single-Image 3D Human Reconstruction [31.782985891629448]
Single-image 3D human reconstruction aims to reconstruct the 3D textured surface of the human body given a single image.
We propose ReFu, a coarse-to-fine approach that refines the projected backside view image and fuses the refined image to predict the final human body.
arXiv Detail & Related papers (2022-11-09T09:14:11Z) - Total Scale: Face-to-Body Detail Reconstruction from Sparse RGBD Sensors [52.38220261632204]
Flat facial surfaces frequently occur in the PIFu-based reconstruction results.
We propose a two-scale PIFu representation to enhance the quality of the reconstructed facial details.
Experiments demonstrate the effectiveness of our approach in vivid facial details and deforming body shapes.
arXiv Detail & Related papers (2021-12-03T18:46:49Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
We present a solution to egocentric 3D body pose estimation from monocular images captured from downward looking fish-eye cameras installed on the rim of a head mounted VR device.
This unusual viewpoint leads to images with unique visual appearance, with severe self-occlusions and perspective distortions.
We propose an encoder-decoder architecture with a novel multi-branch decoder designed to account for the varying uncertainty in 2D predictions.
arXiv Detail & Related papers (2020-11-02T16:18:06Z) - Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction
of Clothed People [36.30755368202957]
We present a novel method to improve the accuracy of the 3D reconstruction of clothed human shape from a single image.
The accuracy and completeness for reconstruction of clothed people is limited due to the large variation in shape resulting from clothing, hair, body size, pose and camera viewpoint.
arXiv Detail & Related papers (2020-09-29T17:18:00Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.