Memory-Reduced Meta-Learning with Guaranteed Convergence
- URL: http://arxiv.org/abs/2412.12030v1
- Date: Mon, 16 Dec 2024 17:55:55 GMT
- Title: Memory-Reduced Meta-Learning with Guaranteed Convergence
- Authors: Honglin Yang, Ji Ma, Xiao Yu,
- Abstract summary: We propose a meta-learning algorithm that can avoid using historical parameters/gradients and significantly reduce memory costs in each iteration.
Experimental results on meta-learning benchmarks confirm the efficacy of our proposed algorithm.
- Score: 7.306367313570251
- License:
- Abstract: The optimization-based meta-learning approach is gaining increased traction because of its unique ability to quickly adapt to a new task using only small amounts of data. However, existing optimization-based meta-learning approaches, such as MAML, ANIL and their variants, generally employ backpropagation for upper-level gradient estimation, which requires using historical lower-level parameters/gradients and thus increases computational and memory overhead in each iteration. In this paper, we propose a meta-learning algorithm that can avoid using historical parameters/gradients and significantly reduce memory costs in each iteration compared to existing optimization-based meta-learning approaches. In addition to memory reduction, we prove that our proposed algorithm converges sublinearly with the iteration number of upper-level optimization, and the convergence error decays sublinearly with the batch size of sampled tasks. In the specific case in terms of deterministic meta-learning, we also prove that our proposed algorithm converges to an exact solution. Moreover, we quantify that the computational complexity of the algorithm is on the order of $\mathcal{O}(\epsilon^{-1})$, which matches existing convergence results on meta-learning even without using any historical parameters/gradients. Experimental results on meta-learning benchmarks confirm the efficacy of our proposed algorithm.
Related papers
- Fast Adaptation with Kernel and Gradient based Meta Leaning [4.763682200721131]
We propose two algorithms to improve both the inner and outer loops of Model A Meta Learning (MAML)
Our first algorithm redefines the optimization problem in the function space to update the model using closed-form solutions.
In the outer loop, the second algorithm adjusts the learning of the meta-learner by assigning weights to the losses from each task of the inner loop.
arXiv Detail & Related papers (2024-11-01T07:05:03Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
We propose the use of meta-learning to infer population-based blackbox generalizations.
We show that the meta-loss function encourages a learned algorithm to alter its search behavior so that it can easily fit into a new context.
arXiv Detail & Related papers (2021-03-05T08:13:25Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Convergence of Meta-Learning with Task-Specific Adaptation over Partial
Parameters [152.03852111442114]
Although model-agnostic metalearning (MAML) is a very successful algorithm meta-learning practice, it can have high computational complexity.
Our paper shows that such complexity can significantly affect the overall convergence performance of ANIL.
arXiv Detail & Related papers (2020-06-16T19:57:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.