Learning from Subjective Ratings Using Auto-Decoded Deep Latent
Embeddings
- URL: http://arxiv.org/abs/2104.05570v1
- Date: Mon, 12 Apr 2021 15:40:42 GMT
- Title: Learning from Subjective Ratings Using Auto-Decoded Deep Latent
Embeddings
- Authors: Bowen Li, Xinping Ren, Ke Yan, Le Lu, Guotong Xie, Jing Xiao, Dar-In
Tai, Adam P. Harrison
- Abstract summary: Managing subjectivity in labels is a fundamental problem in medical imaging analysis.
We introduce auto-decoded deep latent embeddings (ADDLE)
ADDLE explicitly models the tendencies of each rater using an auto-decoder framework.
- Score: 23.777855250882244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depending on the application, radiological diagnoses can be associated with
high inter- and intra-rater variabilities. Most computer-aided diagnosis (CAD)
solutions treat such data as incontrovertible, exposing learning algorithms to
considerable and possibly contradictory label noise and biases. Thus, managing
subjectivity in labels is a fundamental problem in medical imaging analysis. To
address this challenge, we introduce auto-decoded deep latent embeddings
(ADDLE), which explicitly models the tendencies of each rater using an
auto-decoder framework. After a simple linear transformation, the latent
variables can be injected into any backbone at any and multiple points,
allowing the model to account for rater-specific effects on the diagnosis.
Importantly, ADDLE does not expect multiple raters per image in training,
meaning it can readily learn from data mined from hospital archives. Moreover,
the complexity of training ADDLE does not increase as more raters are added.
During inference each rater can be simulated and a 'mean' or 'greedy' virtual
rating can be produced. We test ADDLE on the problem of liver steatosis
diagnosis from 2D ultrasound (US) by collecting 46 084 studies along with
clinical US diagnoses originating from 65 different raters. We evaluated
diagnostic performance using a separate dataset with gold-standard biopsy
diagnoses. ADDLE can improve the partial areas under the curve (AUCs) for
diagnosing severe steatosis by 10.5% over standard classifiers while
outperforming other annotator-noise approaches, including those requiring 65
times the parameters.
Related papers
- Denoising Variational Autoencoder as a Feature Reduction Pipeline for the diagnosis of Autism based on Resting-state fMRI [11.871709357017416]
Autism spectrum disorders (ASDs) are developmental conditions characterized by restricted interests and difficulties in communication.
We propose an ASD feature reduction pipeline using resting-state fMRI (rs-fMRI)
We used Ncuts parcellations and Power atlas to extract functional connectivity data, resulting in over 30 thousand features.
arXiv Detail & Related papers (2024-09-30T09:38:47Z) - MADE-for-ASD: A Multi-Atlas Deep Ensemble Network for Diagnosing Autism Spectrum Disorder [4.7377709803078325]
This paper bridges the gap between traditional, time-consuming diagnostic methods and potential automated solutions.
We propose a multi-atlas deep ensemble network, MADE-for-ASD, that integrates multiple atlases of the brain's functional magnetic resonance imaging (fMRI) data.
Our approach integrates demographic information into the prediction workflow, which enhances ASD diagnosis performance.
arXiv Detail & Related papers (2024-07-09T17:49:23Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
We developed a novel deep learning architecture, MUCRAN, to train a deep learning model on highly heterogeneous clinical data.
We trained MUCRAN using 16,821 clinical T1 Axial brain MRIs collected from Massachusetts General Hospital before 2019.
The model showed a robust performance of over 90% accuracy on newly collected data.
arXiv Detail & Related papers (2022-05-05T18:39:09Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.