Denoising Variational Autoencoder as a Feature Reduction Pipeline for the diagnosis of Autism based on Resting-state fMRI
- URL: http://arxiv.org/abs/2410.00068v1
- Date: Mon, 30 Sep 2024 09:38:47 GMT
- Title: Denoising Variational Autoencoder as a Feature Reduction Pipeline for the diagnosis of Autism based on Resting-state fMRI
- Authors: Xinyuan Zheng, Orren Ravid, Robert A. J. Barry, Yoojean Kim, Qian Wang, Young-geun Kim, Xi Zhu, Xiaofu He,
- Abstract summary: Autism spectrum disorders (ASDs) are developmental conditions characterized by restricted interests and difficulties in communication.
We propose an ASD feature reduction pipeline using resting-state fMRI (rs-fMRI)
We used Ncuts parcellations and Power atlas to extract functional connectivity data, resulting in over 30 thousand features.
- Score: 11.871709357017416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autism spectrum disorders (ASDs) are developmental conditions characterized by restricted interests and difficulties in communication. The complexity of ASD has resulted in a deficiency of objective diagnostic biomarkers. Deep learning methods have gained recognition for addressing these challenges in neuroimaging analysis, but finding and interpreting such diagnostic biomarkers are still challenging computationally. We propose an ASD feature reduction pipeline using resting-state fMRI (rs-fMRI). We used Ncuts parcellations and Power atlas to extract functional connectivity data, resulting in over 30 thousand features. Then the pipeline further compresses the connectivities into 5 latent Gaussian distributions, providing is a low-dimensional representation of the data, using a denoising variational autoencoder (DVAE). To test the method, we employed the extracted latent features from the DVAE to classify ASD using traditional classifiers such as support vector machine (SVM) on a large multi-site dataset. The 95% confidence interval for the prediction accuracy of the SVM is [0.63, 0.76] after site harmonization using the extracted latent distributions. Without using DVAE, the prediction accuracy is 0.70, which falls within the interval. This implies that the model successfully encodes the diagnostic information in rs-fMRI data to 5 Gaussian distributions (10 features) without sacrificing prediction performance. The runtime for training the DVAE and obtaining classification results from its extracted latent features (37 minutes) was 7 times shorter compared to training classifiers directly on the raw connectivity matrices (5-6 hours). Our findings also suggest that the Power atlas provides more effective brain connectivity insights for diagnosing ASD than Ncuts parcellations. The encoded features can be used for the help of diagnosis and interpretation of the disease.
Related papers
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - MADE-for-ASD: A Multi-Atlas Deep Ensemble Network for Diagnosing Autism Spectrum Disorder [4.7377709803078325]
This paper bridges the gap between traditional, time-consuming diagnostic methods and potential automated solutions.
We propose a multi-atlas deep ensemble network, MADE-for-ASD, that integrates multiple atlases of the brain's functional magnetic resonance imaging (fMRI) data.
Our approach integrates demographic information into the prediction workflow, which enhances ASD diagnosis performance.
arXiv Detail & Related papers (2024-07-09T17:49:23Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation [0.3222802562733786]
We leverage a deep learning-based method for the automatic diagnosis of schizophrenia using EEG brain recordings.
This approach utilizes generative data augmentation, a powerful technique that enhances the accuracy of the diagnosis.
arXiv Detail & Related papers (2023-10-25T12:55:16Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Exploring traditional machine learning for identification of
pathological auscultations [0.39577682622066246]
Digital 6-channel auscultations of 45 patients were used in various machine learning scenarios.
The aim was to distinguish between normal and anomalous pulmonary sounds.
Supervised models showed a consistent advantage over unsupervised ones.
arXiv Detail & Related papers (2022-09-01T18:03:21Z) - Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder [7.0876609220947655]
Noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD)
This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI.
arXiv Detail & Related papers (2022-04-07T08:50:48Z) - Learning from Subjective Ratings Using Auto-Decoded Deep Latent
Embeddings [23.777855250882244]
Managing subjectivity in labels is a fundamental problem in medical imaging analysis.
We introduce auto-decoded deep latent embeddings (ADDLE)
ADDLE explicitly models the tendencies of each rater using an auto-decoder framework.
arXiv Detail & Related papers (2021-04-12T15:40:42Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.