Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement
with superconducting transmon qutrits
- URL: http://arxiv.org/abs/2104.05627v3
- Date: Thu, 24 Feb 2022 10:52:19 GMT
- Title: Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement
with superconducting transmon qutrits
- Authors: Alba Cervera-Lierta, Mario Krenn, Al\'an Aspuru-Guzik, Alexey Galda
- Abstract summary: We create and certify a high-dimensional multipartite entangled state in a superconducting quantum processor.
Our work demonstrates that another platform, superconducting systems, is ready to exploit genuine high-dimensional entanglement.
- Score: 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multipartite entanglement is one of the core concepts in quantum information
science with broad applications that span from condensed matter physics to
quantum physics foundations tests. Although its most studied and tested forms
encompass two-dimensional systems, current quantum platforms technically allow
the manipulation of additional quantum levels. We report the experimental
demonstration and certification of a high-dimensional multipartite entangled
state in a superconducting quantum processor. We generate the three-qutrit
Greenberger-Horne-Zeilinger state by designing the necessary pulses to perform
high-dimensional quantum operations. We obtain the fidelity of $76\pm 1\%$,
proving the generation of a genuine three-partite and three-dimensional
entangled state. To this date, only photonic devices have been able to create
and certify the entanglement of these high-dimensional states. Our work
demonstrates that another platform, superconducting systems, is ready to
exploit genuine high-dimensional entanglement and that a programmable quantum
device accessed on the cloud can be used to design and execute experiments
beyond binary quantum computation.
Related papers
- Empowering high-dimensional quantum computing by traversing the dual
bosonic ladder [0.12045539806824922]
We present a robust, hardware-efficient, and experimental approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions.
Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.
arXiv Detail & Related papers (2023-12-29T18:49:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Entangled state generation via quantum walks with multiple coins [2.471925498075058]
Entanglement swapping provides an efficient method to generate entanglement in quantum communication protocols.
We propose a novel scheme to generate entangled state including two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ state between several designate parties via the model of quantum walks with multiple coins.
arXiv Detail & Related papers (2020-11-03T11:39:40Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Experimental Demonstration of Efficient High-dimensional Quantum Gates
with Orbital Angular Momentum [4.685726479038803]
We experimentally demonstrate the four-dimensional X gate and its unique higher orders with the average conversion efficiency 93%.
Our work is an important step towards the goal of achieving arbitrary high-dimensional quantum circuit and paves a way for the implementation of high-dimensional quantum communication and computation.
arXiv Detail & Related papers (2020-10-11T15:20:07Z) - Quantum Computer-Aided design of Quantum Optics Hardware [1.0499611180329804]
We present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics.
Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit.
We show explicitly how digital quantum simulation of Boson Sampling experiments can be realized.
arXiv Detail & Related papers (2020-06-04T18:00:13Z) - Quantum Information Scrambling in a Superconducting Qutrit Processor [0.0]
Delocalization of quantum information in strongly-interacting many-body systems has recently begun to unite our understanding of black hole dynamics, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos.
We implement two-qutrit scrambling operations and embed them in a five-qutrit teleportation algorithm to measure the associated out-time-ordered correlation functions.
arXiv Detail & Related papers (2020-03-06T16:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.