An experimental proposal certification for any three-qubit generalized Greenberger-Horne-Zeilinger states based on the fine-grained steering inequality
- URL: http://arxiv.org/abs/2412.19028v1
- Date: Thu, 26 Dec 2024 02:36:05 GMT
- Title: An experimental proposal certification for any three-qubit generalized Greenberger-Horne-Zeilinger states based on the fine-grained steering inequality
- Authors: Zhi-Hao Bian, Jia-Qi Sun, Yi Shen,
- Abstract summary: Multi-party quantum steering is an important concept in quantum information theory and quantum mechanics.
Here we provide an experimental proposal to prepare the generalized Greenberger-Horne-Zeilinger (GGHZ) states in photon system.
- Score: 2.300109205888756
- License:
- Abstract: Multi-party quantum steering is an important concept in quantum information theory and quantum mechanics, typically related to quantum entanglement and quantum nonlocality. It enables precise manipulation of large quantum systems, which is essential for large-scale quantum computing, simulations, and quantum communication. Recently, a quantum steering certification for any three-qubit generalized Greenberger-Horne-Zeilinger (GGHZ) states based on the fine-grained steering inequality was proved [Quantum Studies: Mathematics and Foundations, 2022, 9(2): 175-198]. Here we provide an experimental proposal to prepare the GGHZ states in photon system. The measurement observalbes in each party can be realized by different polarization optical elements. By choosing the angles of the waveplates, our experiment proposal can observe the maximum quantum violation for any three-qubit GGHZ states. Our proposal can be easily extended to high-dimensional qubits and multi-photon GHZ states, which provides a method to study the complex multi-party quantum protocols.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Observation of quantum nonlocality in Greenberger-Horne-Zeilinger entanglement on a silicon chip [4.895323415185291]
Greenberger-Horne-Zeilinger (GHZ) state allows one to observe the striking conflict of quantum physics to local realism.
integrated photonic chip capable of generating and manipulating the four-photon GHZ state.
Our work paves the way to perform fundamental tests of quantum physics with complex integrated quantum devices.
arXiv Detail & Related papers (2023-11-28T12:43:46Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Experimental Demonstration of a Quantum Controlled-SWAP Gate with
Multiple Degrees of Freedom of a Single Photon [4.121840022679671]
We propose and experimentally implement quantum Fredkin gate in a single-photon hybrid-degrees-of-freedom system.
We find that a kind of Greenberger-Horne-Zeilinger-like states can be prepared by using our quantum Fredkin gate.
arXiv Detail & Related papers (2020-11-04T23:39:20Z) - Quantum tomography of an entangled three-spin state in silicon [0.0]
We show operation of a fully functional three-qubit array in silicon and generation of a three-qubit Greenberger-Horne-Zeilinger (GHZ) state.
Our result shows the potential of silicon-based qubit platform for demonstrations of multiqubit quantum algorithms.
arXiv Detail & Related papers (2020-10-20T14:27:46Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.