Empowering high-dimensional quantum computing by traversing the dual
bosonic ladder
- URL: http://arxiv.org/abs/2312.17741v1
- Date: Fri, 29 Dec 2023 18:49:26 GMT
- Title: Empowering high-dimensional quantum computing by traversing the dual
bosonic ladder
- Authors: Long B. Nguyen, Noah Goss, Karthik Siva, Yosep Kim, Ed Younis,
Bingcheng Qing, Akel Hashim, David I. Santiago, Irfan Siddiqi
- Abstract summary: We present a robust, hardware-efficient, and experimental approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions.
Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.
- Score: 0.12045539806824922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional quantum information processing has emerged as a promising
avenue to transcend hardware limitations and advance the frontiers of quantum
technologies. Harnessing the untapped potential of the so-called qudits
necessitates the development of quantum protocols beyond the established qubit
methodologies. Here, we present a robust, hardware-efficient, and extensible
approach for operating multidimensional solid-state systems using
Raman-assisted two-photon interactions. To demonstrate its efficacy, we
construct a set of multi-qubit operations, realize highly entangled
multidimensional states including atomic squeezed states and Schr\"odinger cat
states, and implement programmable entanglement distribution along a qudit
array. Our work illuminates the quantum electrodynamics of strongly driven
multi-qudit systems and provides the experimental foundation for the future
development of high-dimensional quantum applications.
Related papers
- A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Discrete-time quantum walk approach to high-dimensional quantum state
transfer and quantum routing [6.236377496735381]
We propose a class of quantum-walk architecture networks that admit the efficient routing of high-dimensional quantum states.
Perfect state transfer of an arbitrary unknown qudit state can be achieved between two arbitrary nodes via a one-dimensional lackadaisical discrete-time quantum walk.
arXiv Detail & Related papers (2021-08-10T21:15:41Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - A proposal for practical multidimensional quantum networks [0.0]
High-dimensional quantum systems (qudits) present higher photon information efficiency and robustness to noise.
Their use in quantum networks present experimental challenges due to the impractical resources required in high-dimensional quantum repeaters.
Our work significantly simplifies the implementation of high-dimensional quantum networks, fostering their development with current technology.
arXiv Detail & Related papers (2021-03-16T17:15:58Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum Information Scrambling in a Superconducting Qutrit Processor [0.0]
Delocalization of quantum information in strongly-interacting many-body systems has recently begun to unite our understanding of black hole dynamics, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos.
We implement two-qutrit scrambling operations and embed them in a five-qutrit teleportation algorithm to measure the associated out-time-ordered correlation functions.
arXiv Detail & Related papers (2020-03-06T16:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.