Geometry-aware data augmentation for monocular 3D object detection
- URL: http://arxiv.org/abs/2104.05858v1
- Date: Mon, 12 Apr 2021 23:12:48 GMT
- Title: Geometry-aware data augmentation for monocular 3D object detection
- Authors: Qing Lian, Botao Ye, Ruijia Xu, Weilong Yao, Tong Zhang
- Abstract summary: This paper focuses on monocular 3D object detection, one of the essential modules in autonomous driving systems.
A key challenge is that the depth recovery problem is ill-posed in monocular data.
We conduct a thorough analysis to reveal how existing methods fail to robustly estimate depth when different geometry shifts occur.
We convert the aforementioned manipulations into four corresponding 3D-aware data augmentation techniques.
- Score: 18.67567745336633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on monocular 3D object detection, one of the essential
modules in autonomous driving systems. A key challenge is that the depth
recovery problem is ill-posed in monocular data. In this work, we first conduct
a thorough analysis to reveal how existing methods fail to robustly estimate
depth when different geometry shifts occur. In particular, through a series of
image-based and instance-based manipulations for current detectors, we
illustrate existing detectors are vulnerable in capturing the consistent
relationships between depth and both object apparent sizes and positions. To
alleviate this issue and improve the robustness of detectors, we convert the
aforementioned manipulations into four corresponding 3D-aware data augmentation
techniques. At the image-level, we randomly manipulate the camera system,
including its focal length, receptive field and location, to generate new
training images with geometric shifts. At the instance level, we crop the
foreground objects and randomly paste them to other scenes to generate new
training instances. All the proposed augmentation techniques share the virtue
that geometry relationships in objects are preserved while their geometry is
manipulated. In light of the proposed data augmentation methods, not only the
instability of depth recovery is effectively alleviated, but also the final 3D
detection performance is significantly improved. This leads to superior
improvements on the KITTI and nuScenes monocular 3D detection benchmarks with
state-of-the-art results.
Related papers
- VirtualPainting: Addressing Sparsity with Virtual Points and
Distance-Aware Data Augmentation for 3D Object Detection [3.5259183508202976]
We present an innovative approach that involves the generation of virtual LiDAR points using camera images.
We also enhance these virtual points with semantic labels obtained from image-based segmentation networks.
Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods.
arXiv Detail & Related papers (2023-12-26T18:03:05Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - Is Pseudo-Lidar needed for Monocular 3D Object detection? [32.772699246216774]
We propose an end-to-end, single stage, monocular 3D object detector, DD3D, that can benefit from depth pre-training like pseudo-lidar methods, but without their limitations.
Our architecture is designed for effective information transfer between depth estimation and 3D detection, allowing us to scale with the amount of unlabeled pre-training data.
arXiv Detail & Related papers (2021-08-13T22:22:51Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.