論文の概要: VariTex: Variational Neural Face Textures
- arxiv url: http://arxiv.org/abs/2104.05988v1
- Date: Tue, 13 Apr 2021 07:47:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 13:49:16.715665
- Title: VariTex: Variational Neural Face Textures
- Title(参考訳): VariTex: 変異型ニューラルフェイステクスチャ
- Authors: Marcel C. B\"uhler (1), Abhimitra Meka (2), Gengyan Li (1 and 2),
Thabo Beeler (2), Otmar Hilliges (1) ((1) ETH Zurich, (2) Google)
- Abstract要約: VariTexは、ニューラルフェイステクスチャの変動潜在特徴空間を学習する手法である。
頭部の完全な画像を生成するために,毛髪などの正確な詳細情報を生成する付加デコーダを提案する。
その結果、顔のポーズ、顔の形状、表情の微粒度を制御できる新しいアイデンティティの幾何学的に一貫性のある画像を生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep generative models have recently demonstrated the ability to synthesize
photorealistic images of human faces with novel identities. A key challenge to
the wide applicability of such techniques is to provide independent control
over semantically meaningful parameters: appearance, head pose, face shape, and
facial expressions. In this paper, we propose VariTex - to the best of our
knowledge the first method that learns a variational latent feature space of
neural face textures, which allows sampling of novel identities. We combine
this generative model with a parametric face model and gain explicit control
over head pose and facial expressions. To generate images of complete human
heads, we propose an additive decoder that generates plausible additional
details such as hair. A novel training scheme enforces a pose independent
latent space and in consequence, allows learning of a one-to-many mapping
between latent codes and pose-conditioned exterior regions. The resulting
method can generate geometrically consistent images of novel identities
allowing fine-grained control over head pose, face shape, and facial
expressions, facilitating a broad range of downstream tasks, like sampling
novel identities, re-posing, expression transfer, and more.
- Abstract(参考訳): 深部生成モデルは最近、人間の顔のフォトリアリスティック画像を新しいアイデンティティで合成できることを実証した。
このような技術の幅広い適用性に対する鍵となる課題は、外観、頭部のポーズ、顔の形状、表情といった意味的に意味のあるパラメータを独立に制御することである。
本稿では,ニューラルフェイステクスチャの変動的潜在性空間を学習する最初の手法であるvaritexを提案する。
この生成モデルとパラメトリックな顔モデルを組み合わせて,顔のポーズや表情を明示的に制御する。
頭部の完全な画像を生成するために,毛髪などの正確な詳細情報を生成する付加デコーダを提案する。
新しい訓練はポーズ独立な潜在空間を強制し、その結果、潜在コードとポーズ条件外領域の間の1対1のマッピングを学ぶことができる。
その結果、顔のポーズ、顔の形状、表情の微妙な制御が可能となり、新しいアイデンティティのサンプリング、再配置、表情の転送など、下流の幅広いタスクが容易になる新規なアイデンティティの幾何学的一貫した画像を生成することができる。
関連論文リスト
- Cafca: High-quality Novel View Synthesis of Expressive Faces from Casual Few-shot Captures [33.463245327698]
人間の顔に先立って,高忠実度表現型顔のモデリングが可能な新しい容積を提示する。
我々は3D Morphable Face Modelを活用して大規模なトレーニングセットを合成し、それぞれのアイデンティティを異なる表現でレンダリングする。
次に、この合成データセットに先立って条件付きニューラルレージアンスフィールドをトレーニングし、推論時に、モデルを1つの被験者の非常にスパースな実画像のセットで微調整する。
論文 参考訳(メタデータ) (2024-10-01T12:24:50Z) - GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
論文 参考訳(メタデータ) (2024-09-18T13:05:43Z) - Towards a Simultaneous and Granular Identity-Expression Control in Personalized Face Generation [34.72612800373437]
人間中心のコンテンツ生成では、事前訓練されたテキスト・ツー・イメージモデルでは、ユーザーが望んだポートレート画像を生成するのに苦労する。
同一性表現の同時制御とよりきめ細かい表現合成が可能な,新しい多モード顔生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-02T13:28:39Z) - When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for
Personalized Image Generation [60.305112612629465]
テキストと画像の拡散モデルは、多種多様で高品質でフォトリアリスティックな画像を生成するのに優れている。
本稿では,拡散モデルのための拡張されたアイデンティティ保存とアンタングル化を実現するために,StyleGAN 埋め込み空間 $mathcalW_+$ の新たな利用法を提案する。
提案手法は,即時記述に適合するだけでなく,一般的なスタイルGAN編集方向に対応可能なパーソナライズされたテキスト・ツー・イメージ出力を生成する。
論文 参考訳(メタデータ) (2023-11-29T09:05:14Z) - FaceChain: A Playground for Human-centric Artificial Intelligence
Generated Content [36.48960592782015]
FaceChainは、パーソナライズされたポートレート生成フレームワークで、一連のカスタマイズされた画像生成モデルと、顔に関連する知覚理解モデルの豊富なセットを組み合わせる。
我々は、複数のSOTAフェイスモデルを生成手順に注入し、従来のソリューションと比較して、より効率的なラベルタグ付け、データ処理、モデル後処理を実現する。
FaceChainをベースとして、仮想トライオンや2Dトーキングヘッドなど、その価値をよりよく示すための、より広いグラウンドを構築するためのいくつかのアプリケーションも開発しています。
論文 参考訳(メタデータ) (2023-08-28T02:20:44Z) - DreamIdentity: Improved Editability for Efficient Face-identity
Preserved Image Generation [69.16517915592063]
人間の顔の正確な表現を学習するための新しい顔識別エンコーダを提案する。
また、モデルの編集可能性を高めるために、自己拡張編集可能性学習を提案する。
我々の手法は、異なるシーン下でより高速にアイデンティティ保存された画像を生成することができる。
論文 参考訳(メタデータ) (2023-07-01T11:01:17Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
本稿では,1つのパスを1つのパスで合成し,必要なニューラルネットワークのレンダリングサンプルのみを合成するスタイルベースの生成ネットワークを提案する。
このモデルは、任意のポーズと照明の顔画像に正確に適合し、顔の特徴を抽出し、制御可能な条件下で顔を再レンダリングするために使用できることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:28:45Z) - Neural Novel Actor: Learning a Generalized Animatable Neural
Representation for Human Actors [98.24047528960406]
本稿では,複数の人物の多視点画像のスパース集合から,汎用的アニマタブルなニューラル表現を学習するための新しい手法を提案する。
学習された表現は、カメラのスパースセットから任意の人の新しいビューイメージを合成し、さらにユーザのポーズ制御でアニメーション化することができる。
論文 参考訳(メタデータ) (2022-08-25T07:36:46Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
モノクロビデオから暗黙の頭部アバターを学習するための新しい手法であるIMavatarを提案する。
従来の3DMMによるきめ細かい制御機構に着想を得て, 学習用ブレンドサップとスキンフィールドによる表現・ポーズ関連変形を表現した。
本手法は,最先端の手法と比較して,幾何性を改善し,より完全な表現空間をカバーできることを定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2021-12-14T15:30:32Z) - Realistic Face Reenactment via Self-Supervised Disentangling of Identity
and Pose [23.211318473026243]
本研究では,大量の未収録映像を自然に再現する自己教師型ハイブリッドモデル(DAE-GAN)を提案する。
提案手法は,2つのデフォーミングオートエンコーダと条件生成の最新の進歩を組み合わせたものである。
実験の結果,再現された画像の良好な品質と,同一性間での顔の動きの伝達の柔軟性が示された。
論文 参考訳(メタデータ) (2020-03-29T06:45:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。