論文の概要: GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations
- arxiv url: http://arxiv.org/abs/2409.11951v1
- Date: Wed, 18 Sep 2024 13:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 17:36:39.607466
- Title: GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations
- Title(参考訳): ガウシアンヘッド:粗大な表現から得られるガウシアンヘッドアバターのエンド・ツー・エンド学習
- Authors: Kartik Teotia, Hyeongwoo Kim, Pablo Garrido, Marc Habermann, Mohamed Elgharib, Christian Theobalt,
- Abstract要約: マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
- 参考スコア(独自算出の注目度): 54.94362657501809
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Real-time rendering of human head avatars is a cornerstone of many computer graphics applications, such as augmented reality, video games, and films, to name a few. Recent approaches address this challenge with computationally efficient geometry primitives in a carefully calibrated multi-view setup. Albeit producing photorealistic head renderings, it often fails to represent complex motion changes such as the mouth interior and strongly varying head poses. We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time. At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements. First, with rich facial features extracted from raw input frames, we learn to deform the coarse facial geometry of the template mesh. We then initialize 3D Gaussians on the deformed surface and refine their positions in a fine step. We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework. This enables not only controllable facial animation via video inputs, but also high-fidelity novel view synthesis of challenging facial expressions, such as tongue deformations and fine-grained teeth structure under large motion changes. Moreover, it encourages the learned head avatar to generalize towards new facial expressions and head poses at inference time. We demonstrate the performance of our method with comparisons against the related methods on different datasets, spanning challenging facial expression sequences across multiple identities. We also show the potential application of our approach by demonstrating a cross-identity facial performance transfer application.
- Abstract(参考訳): 人間の頭アバターのリアルタイムレンダリングは、拡張現実、ビデオゲーム、映画など、多くのコンピュータグラフィックスアプリケーションの基盤となっている。
近年のアプローチでは、計算効率のよい幾何プリミティブを用いて、慎重に校正されたマルチビュー設定でこの問題に対処している。
フォトリアリスティックなヘッドレンダリングを生成するが、口内や強く変化するヘッドポーズのような複雑な動きの変化を表現できないことが多い。
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
まず、生の入力フレームから抽出された豊富な顔の特徴から、テンプレートメッシュの粗い顔形状を変形させることを学ぶ。
そして、変形した表面上で3次元ガウスを初期化し、その位置を微細なステップで洗練する。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
これにより、ビデオ入力による顔のアニメーションを制御できるだけでなく、舌の変形や大きな動きの変化によるきめ細かな歯の構造といった挑戦的な表情を高忠実に表現できる。
さらに、学習した頭部アバターは、推論時に新しい表情や頭部ポーズに向けて一般化することを奨励する。
提案手法の性能を,異なるデータセット上の関連手法と比較し,複数のIDにまたがる難解な表情列にまたがって示す。
また, 顔の異性間性能伝達アプリケーションの実証により, 提案手法の応用の可能性を示す。
関連論文リスト
- Single Image, Any Face: Generalisable 3D Face Generation [59.9369171926757]
我々は,制約のない単一画像入力を伴う3次元顔を生成する新しいモデルGen3D-Faceを提案する。
私たちの知る限りでは、これは1枚の画像からフォトリアリスティックな3D顔アバターを作るための最初の試みであり、ベンチマークである。
論文 参考訳(メタデータ) (2024-09-25T14:56:37Z) - FreeAvatar: Robust 3D Facial Animation Transfer by Learning an Expression Foundation Model [45.0201701977516]
ビデオ駆動の3D顔アニメーション転送は、アクターの表情を再現するためにアバターを駆動することを目的としている。
我々は,学習した表現のみに依存する,堅牢な顔アニメーショントランスファー手法であるFreeAvatarを提案する。
論文 参考訳(メタデータ) (2024-09-20T03:17:01Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
本稿では,3次元形態素な顔モデルを構築するための新しい手法を提案する。
本手法は, 最先端手法と比較して, フォトリアリズム, 幾何, 表現精度を向上する。
論文 参考訳(メタデータ) (2023-05-04T17:58:40Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
モノクロビデオから暗黙の頭部アバターを学習するための新しい手法であるIMavatarを提案する。
従来の3DMMによるきめ細かい制御機構に着想を得て, 学習用ブレンドサップとスキンフィールドによる表現・ポーズ関連変形を表現した。
本手法は,最先端の手法と比較して,幾何性を改善し,より完全な表現空間をカバーできることを定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2021-12-14T15:30:32Z) - Image-to-Video Generation via 3D Facial Dynamics [78.01476554323179]
静止画像から様々な映像を生成するために多目的モデルであるFaceAnimeを提案する。
私たちのモデルは、顔ビデオや顔ビデオの予測など、さまざまなAR/VRやエンターテイメントアプリケーションに汎用的です。
論文 参考訳(メタデータ) (2021-05-31T02:30:11Z) - VariTex: Variational Neural Face Textures [0.0]
VariTexは、ニューラルフェイステクスチャの変動潜在特徴空間を学習する手法である。
頭部の完全な画像を生成するために,毛髪などの正確な詳細情報を生成する付加デコーダを提案する。
その結果、顔のポーズ、顔の形状、表情の微粒度を制御できる新しいアイデンティティの幾何学的に一貫性のある画像を生成することができる。
論文 参考訳(メタデータ) (2021-04-13T07:47:53Z) - Head2Head++: Deep Facial Attributes Re-Targeting [6.230979482947681]
我々は,顔の3次元形状とGANを利用して,顔と頭部の再現作業のための新しいディープラーニングアーキテクチャを設計する。
駆動単眼動作から複雑な非剛性顔の動きを捉え,時間的に一貫した映像を合成する。
我々のシステムは、ほぼリアルタイムでエンドツーエンドの再現(18fps)を行う。
論文 参考訳(メタデータ) (2020-06-17T23:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。