論文の概要: Group Recommendation Techniques for Feature Modeling and Configuration
- arxiv url: http://arxiv.org/abs/2104.06054v1
- Date: Tue, 13 Apr 2021 09:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 13:32:08.907576
- Title: Group Recommendation Techniques for Feature Modeling and Configuration
- Title(参考訳): 特徴モデリングと構成のためのグループ勧告手法
- Authors: Viet-Man Le
- Abstract要約: 本研究は,機能モデリングと構成のためのグループレコメンデーション手法を提案する。
機能モデルのナビゲーションサポート、グループメンバの満足度、コンフリクト解決に関する問題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In large-scale feature models, feature modeling and configuration processes
are highly expected to be done by a group of stakeholders. In this context,
recommendation techniques can increase the efficiency of feature-model design
and find optimal configurations for groups of stakeholders. Existing studies
show plenty of issues concerning feature model navigation support, group
members' satisfaction, and conflict resolution. This study proposes group
recommendation techniques for feature modeling and configuration on the basis
of addressing the mentioned issues.
- Abstract(参考訳): 大規模な機能モデルでは、機能モデリングと構成プロセスが利害関係者のグループによって行われることが期待されます。
この文脈では、レコメンデーション技術は機能モデル設計の効率を高め、利害関係者のグループのための最適な構成を見つけることができる。
既存の研究では、機能モデルナビゲーションサポート、グループメンバーの満足度、コンフリクト解決に関する多くの問題が示されている。
本研究では,上記の課題に対処する上で,特徴モデリングと構成のためのグループレコメンデーション手法を提案する。
関連論文リスト
- Improving Context-Aware Preference Modeling for Language Models [62.32080105403915]
本稿では、まず、文脈を選択し、選択した文脈に対する嗜好を評価することによって、不特定性を解決する2段階の選好モデリング手法について考察する。
我々は、文脈条件付き嗜好データセットと実験に貢献し、文脈特化選好を評価する言語モデルの能力について検討する。
論文 参考訳(メタデータ) (2024-07-20T16:05:17Z) - A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings [4.989653738257287]
Interest-Aware Capsule Network (IaCN)は、関心指向のアイテム表現を直接学習するモデルに依存しないフレームワークである。
IaCNは補助的なタスクとして機能し、アイテムベースと興味ベースの両方の表現の合同学習を可能にする。
提案手法をベンチマークデータセットで評価し、異なるディープニューラルネットワークを含むさまざまなシナリオを探索する。
論文 参考訳(メタデータ) (2023-08-17T22:40:59Z) - Multi-Granularity Attention Model for Group Recommendation [7.764789596492022]
グループレコメンデーションは、共有された興味、好み、特徴に基づいて、ユーザーグループにパーソナライズされたレコメンデーションを提供する。
本稿では、グループメンバーの潜伏傾向を解明し、推薦ノイズを軽減するために、MGAM(Multi-Granularity Attention Model)を提案する。
提案手法は,複数の粒度にわたるグループ推薦ノイズを効果的に低減し,個人の興味を包括的に学習する。
論文 参考訳(メタデータ) (2023-08-08T03:24:44Z) - Methodology for Holistic Reference Modeling in Systems Engineering [0.0]
本稿では,様々な視点やレベルにまたがる参照モデルを記述するための全体論的アプローチを提案する。
メリットには、参照設計の開始時点ですでに考慮されているパフォーマンスパラメータによる、機能カバレッジのエンドツーエンドトレーサビリティが含まれる。
論文 参考訳(メタデータ) (2022-11-21T13:41:07Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
このフレームワークは、モデル定義、クエリ、パラメータ学習、モデル評価、データ監視、決定レコメンデーション、Webポータルのサービスをサポートする。
さらに、MTSAデータモデルとクエリ言語を拡張して、学習、監視、レコメンデーションのサービスにおいて、この種の問題をサポートする。
論文 参考訳(メタデータ) (2022-10-18T16:56:17Z) - MultiHead MultiModal Deep Interest Recommendation Network [0.0]
本稿ではDINciteAuthors01モデルにマルチヘッドおよびマルチモーダルモジュールを追加する。
実験により、マルチヘッドマルチモーダルDINは推奨予測効果を向上し、様々な包括的指標において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-19T18:59:02Z) - Graph Neural Netwrok with Interaction Pattern for Group Recommendation [1.066048003460524]
GIP4GRモデル(グループ推薦のための相互作用パターン付きグラフニューラルネットワーク)を提案する。
具体的には,グラフのトポロジ的構造におけるグループ・ユーザ間相互作用を表現するために,強力な表現能力を持つグラフニューラルネットワークフレームワークを用いた。
2つの実世界のデータセットで多くの実験を行い、モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2021-09-21T13:42:46Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Model Complexity of Deep Learning: A Survey [79.20117679251766]
深層学習におけるモデル複雑性に関する最新の研究を体系的に概観します。
本稿では,これら2つのカテゴリに関する既存研究について,モデルフレームワーク,モデルサイズ,最適化プロセス,データ複雑性の4つの重要な要因について概説する。
論文 参考訳(メタデータ) (2021-03-08T22:39:32Z) - An Overview of Recommender Systems and Machine Learning in Feature
Modeling and Configuration [55.67505546330206]
レコメンダーシステムおよび機械学習技術の適用に関連する潜在的な新しい研究ラインの概要を説明します。
本論文では,レコメンダーシステムと機械学習の応用例を示し,今後の研究課題について考察する。
論文 参考訳(メタデータ) (2021-02-12T17:21:36Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
グループレコメンデータシステムは、ユーザの個人的な好みだけでなく、嗜好集約戦略も正確に学習できなければならない。
本稿では,BGEM(Bipartite Graphding Model)とGCN(Graph Convolutional Networks)を基本構造として,グループとユーザ表現を統一的に学習する。
論文 参考訳(メタデータ) (2020-10-02T07:11:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。