論文の概要: Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance
- arxiv url: http://arxiv.org/abs/2104.06193v1
- Date: Tue, 13 Apr 2021 13:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 13:26:24.930466
- Title: Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance
- Title(参考訳): 畳み込みニューラルネットワーク, 中心損失, マハラノビス距離を用いた画像データセットの異常検出
- Authors: Garnik Vareldzhan, Kirill Yurkov, Konstantin Ushenin
- Abstract要約: ユーザーアクティビティは、品質や無関係な画像やデータベクターのかなりの数を生成します。
ニューラルネットワークの場合、異常は通常分布外サンプルとして定義される。
本研究では,画像データセットにおける非分布サンプルの監督的および半監督的検出手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User activities generate a significant number of poor-quality or irrelevant
images and data vectors that cannot be processed in the main data processing
pipeline or included in the training dataset. Such samples can be found with
manual analysis by an expert or with anomalous detection algorithms. There are
several formal definitions for the anomaly samples. For neural networks, the
anomalous is usually defined as out-of-distribution samples. This work proposes
methods for supervised and semi-supervised detection of out-of-distribution
samples in image datasets. Our approach extends a typical neural network that
solves the image classification problem. Thus, one neural network after
extension can solve image classification and anomalous detection problems
simultaneously. Proposed methods are based on the center loss and its effect on
a deep feature distribution in a last hidden layer of the neural network. This
paper provides an analysis of the proposed methods for the LeNet and
EfficientNet-B0 on the MNIST and ImageNet-30 datasets.
- Abstract(参考訳): ユーザアクティビティは、メインのデータ処理パイプラインやトレーニングデータセットに含まれない、品質の悪い、あるいは無関係な画像やデータベクトルをかなりの数生成します。
このようなサンプルは、専門家による手動分析や異常検出アルゴリズムで見つけることができる。
異常サンプルにはいくつかの公式な定義がある。
ニューラルネットワークの場合、異常は通常分布外サンプルとして定義される。
本研究は,画像データセットにおける分布外サンプルの教師ありおよび半教師あり検出手法を提案する。
我々のアプローチは、画像分類問題を解決する典型的なニューラルネットワークを拡張している。
これにより、拡張後の1つのニューラルネットワークは、画像分類と異常検出を同時に解くことができる。
提案手法は、ニューラルネットワークの最後の隠れ層における中心損失とその深い特徴分布に与える影響に基づいている。
本稿では,MNIST と ImageNet-30 データセット上での LeNet と EfficientNet-B0 の手法を提案する。
関連論文リスト
- On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors [2.3265565167163906]
ベイズニューラルネットワークは、ディープニューラルネットワークにおける不確実性をモデル化するための有望なアプローチである。
ニューラルネットワークの 後部分布からサンプルを生成することは 大きな課題です
この方向の進歩の1つは、モンテカルロ・マルコフ連鎖サンプリングアルゴリズムへの適応的なステップサイズの導入である。
本稿では,これらの手法が,ステップサイズやバッチサイズが小さくても,サンプリングした分布にかなりの偏りがあることを実証する。
論文 参考訳(メタデータ) (2024-03-13T15:21:14Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - AnoDFDNet: A Deep Feature Difference Network for Anomaly Detection [6.508649912734565]
本稿では,畳み込みニューラルネットワークと視覚変換器を用いた高速列車画像の新たな異常検出(AD)手法を提案する。
提案手法は,同じ領域の異なる時間に撮影された2つの画像の異常な差を検出する。
論文 参考訳(メタデータ) (2022-03-29T02:24:58Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
本論文では, 誤りのある単一ビューあるいは複数ビューのデータに対して, 新たなロバストグラフ畳み込みニューラルネットワークを提案する。
従来のグラフ畳み込みネットワークにAutoencodersを介して余分なレイヤを組み込むことで、典型的なエラーモデルを明示的に特徴付けおよび処理します。
論文 参考訳(メタデータ) (2021-03-27T04:47:59Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
ネストネットワーク(Nested Network)またはスリムブルネットワーク(Slimmable Network)は、テスト期間中にアーキテクチャを即座に調整できるニューラルネットワークである。
最近の研究は、トレーニング中に重要なレイヤのノードを順序付けできる"ネストされたドロップアウト"層に焦点を当てている。
論文 参考訳(メタデータ) (2021-01-27T12:34:58Z) - Image Anomaly Detection by Aggregating Deep Pyramidal Representations [16.246831343527052]
異常検出は、データセット内で、ほとんどのデータと大きく異なるサンプルを特定することで構成される。
本稿では,複数のピラミッドレベルを持つ深層ニューラルネットワークを用いた画像異常検出に着目し,画像特徴を異なるスケールで解析する。
論文 参考訳(メタデータ) (2020-11-12T09:58:27Z) - Semi-supervised deep learning based on label propagation in a 2D
embedded space [117.9296191012968]
提案されたソリューションは、少数の教師なしイメージから多数の教師なしイメージにラベルを伝達し、ディープニューラルネットワークモデルをトレーニングする。
本稿では、より正確なラベル付きサンプルを反復してセットから深層ニューラルネットワーク(VGG-16)をトレーニングするループを提案する。
ラベル付きセットがイテレーションに沿って改善されるにつれて、ニューラルネットワークの機能が改善される。
論文 参考訳(メタデータ) (2020-08-02T20:08:54Z) - $\text{A}^3$: Activation Anomaly Analysis [0.7734726150561088]
隠れアクティベーション値には,正常標本と異常標本の識別に有用な情報が含まれていることを示す。
我々のアプローチは、純粋にデータ駆動のエンドツーエンドモデルで3つのニューラルネットワークを組み合わせる。
異常ネットワークのおかげで、我々の手法は厳密な半教師付き設定でも機能する。
論文 参考訳(メタデータ) (2020-03-03T21:23:56Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。