論文の概要: Latent Correlation Representation Learning for Brain Tumor Segmentation
with Missing MRI Modalities
- arxiv url: http://arxiv.org/abs/2104.06231v1
- Date: Tue, 13 Apr 2021 14:21:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 13:19:11.482661
- Title: Latent Correlation Representation Learning for Brain Tumor Segmentation
with Missing MRI Modalities
- Title(参考訳): MRIモダリティの欠如による脳腫瘍切片の潜在相関表現学習
- Authors: Tongxue Zhou, St\ephane Canu, Pierre Vera, Su Ruan
- Abstract要約: MR画像から正確な脳腫瘍を抽出することが臨床診断と治療計画の鍵となる。
臨床におけるいくつかのイメージングモダリティを見逃すのが一般的です。
本稿では,新しい脳腫瘍分割アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.867517731896504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess
brain tumor. Accurately segmenting brain tumor from MR images is the key to
clinical diagnostics and treatment planning. In addition, multi-modal MR images
can provide complementary information for accurate brain tumor segmentation.
However, it's common to miss some imaging modalities in clinical practice. In
this paper, we present a novel brain tumor segmentation algorithm with missing
modalities. Since it exists a strong correlation between multi-modalities, a
correlation model is proposed to specially represent the latent multi-source
correlation. Thanks to the obtained correlation representation, the
segmentation becomes more robust in the case of missing modality. First, the
individual representation produced by each encoder is used to estimate the
modality independent parameter. Then, the correlation model transforms all the
individual representations to the latent multi-source correlation
representations. Finally, the correlation representations across modalities are
fused via attention mechanism into a shared representation to emphasize the
most important features for segmentation. We evaluate our model on BraTS 2018
and BraTS 2019 dataset, it outperforms the current state-of-the-art methods and
produces robust results when one or more modalities are missing.
- Abstract(参考訳): MRIは脳腫瘍を評価するために広く用いられている画像技術である。
MR画像から正確な脳腫瘍を抽出することが臨床診断と治療計画の鍵となる。
さらに、マルチモーダルMR画像は、正確な脳腫瘍セグメンテーションのための補完情報を提供することができる。
しかし, 臨床における画像的特徴の欠如は一般的である。
本稿では,新しい脳腫瘍分割アルゴリズムを提案する。
マルチモダリティ間の強い相関が存在するため、潜在多元相関を特に表現するための相関モデルが提案されている。
得られた相関表現のおかげで、モダリティが欠落した場合、セグメンテーションはより堅牢になる。
まず、各エンコーダによって生成される個々の表現を用いて、モダリティ独立パラメータを推定する。
次に、相関モデルは全ての個々の表現を潜在多元相関表現に変換する。
最後に、モダリティ間の相関表現を注意機構を介して共有表現に融合させ、セグメンテーションの最も重要な特徴を強調する。
当社のモデルをBraTS 2018とBraTS 2019データセットで評価し、現在の最先端メソッドよりも優れており、1つ以上のモダリティが欠如している場合に堅牢な結果を生成する。
関連論文リスト
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
マルチモーダル脳磁気共鳴(MR)イメージングは神経科学や神経学において不可欠である。
現在のMR画像合成アプローチは、通常、特定のタスクのための独立したデータセットで訓練される。
テキスト誘導ユニバーサルMR画像合成モデルであるTUMSynについて述べる。
論文 参考訳(メタデータ) (2024-09-25T11:14:47Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Exploiting Partial Common Information Microstructure for Multi-Modal
Brain Tumor Segmentation [11.583406152227637]
マルチモーダル性による学習は、磁気共鳴画像データから自動脳腫瘍セグメント化に不可欠である。
既存のアプローチは、モダリティのサブセットによって共有される部分的な共通情報に不可避である。
本稿では,このような部分的な共通情報を同定することで,画像分割モデルの識別能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-02-06T01:28:52Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - SMU-Net: Style matching U-Net for brain tumor segmentation with missing
modalities [4.855689194518905]
MRI画像における脳腫瘍のセグメント化のためのスタイルマッチングU-Net(SMU-Net)を提案する。
我々の共同学習手法は、コンテンツとスタイルマッチング機構を用いて、全モダリティネットワークから欠落したモダリティネットワークに情報的特徴を蒸留する。
我々のスタイルマッチングモジュールは、一致した関数を学習して表現空間を適応的に再構成し、情報的特徴とテクスチャ的特徴を完全なモダリティパスから欠落モダリティパスに転送する。
論文 参考訳(メタデータ) (2022-04-06T17:55:19Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities [2.867517731896504]
主な問題は、すべてのMRIが常に臨床検査で利用できるわけではないことである。
今回我々は1つ以上のモダリティが欠落した場合に新しい脳腫瘍分節ネットワークを提案する。
提案ネットワークは,機能強化ジェネレータ,相関制約ブロック,セグメンテーションネットワークの3つのサブネットワークで構成されている。
論文 参考訳(メタデータ) (2021-11-08T10:59:40Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Brain tumor segmentation with missing modalities via latent multi-source
correlation representation [6.060020806741279]
遅延多ソース相関を特殊に発見するために,新しい相関表現ブロックを提案する。
得られた相関表現のおかげで、モダリティが欠落した場合、セグメンテーションはより堅牢になる。
当社のモデルはBraTS 2018データセット上で評価され、現在の最先端メソッドよりも優れており、1つ以上のモダリティが欠如している場合に堅牢な結果が得られます。
論文 参考訳(メタデータ) (2020-03-19T15:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。