論文の概要: Cross-Modality Deep Feature Learning for Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2201.02356v1
- Date: Fri, 7 Jan 2022 07:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-10 18:46:48.141049
- Title: Cross-Modality Deep Feature Learning for Brain Tumor Segmentation
- Title(参考訳): 脳腫瘍セグメンテーションのためのクロスモダリティ深層機能学習
- Authors: Dingwen Zhang, Guohai Huang, Qiang Zhang, Jungong Han, Junwei Han,
Yizhou Yu
- Abstract要約: 本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
- 参考スコア(独自算出の注目度): 158.8192041981564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in machine learning and prevalence of digital medical images
have opened up an opportunity to address the challenging brain tumor
segmentation (BTS) task by using deep convolutional neural networks. However,
different from the RGB image data that are very widespread, the medical image
data used in brain tumor segmentation are relatively scarce in terms of the
data scale but contain the richer information in terms of the modality
property. To this end, this paper proposes a novel cross-modality deep feature
learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make
up for the insufficient data scale. The proposed cross-modality deep feature
learning framework consists of two learning processes: the cross-modality
feature transition (CMFT) process and the cross-modality feature fusion (CMFF)
process, which aims at learning rich feature representations by transiting
knowledge across different modality data and fusing knowledge from different
modality data, respectively. Comprehensive experiments are conducted on the
BraTS benchmarks, which show that the proposed cross-modality deep feature
learning framework can effectively improve the brain tumor segmentation
performance when compared with the baseline methods and state-of-the-art
methods.
- Abstract(参考訳): 近年の機械学習の進歩とデジタル医療画像の普及により、深層畳み込みニューラルネットワークを用いて、挑戦的な脳腫瘍セグメンテーション(BTS)課題に取り組む機会が開かれた。
しかし、非常に広く使われているRGB画像データとは異なり、脳腫瘍セグメンテーションで使用される医療画像データは、データスケールでは比較的少ないが、モダリティ特性ではよりリッチな情報を含んでいる。
そこで本稿では,脳腫瘍をマルチモーダリティmriデータから切り離すための,新しいクロスモーダリティ深層特徴学習フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにわたる豊富なパターンをマイニングすることだ。
提案するクロスモダリティ深層特徴学習フレームワークは,異なるモダリティデータ間で知識を伝達し,異なるモダリティデータから知識を融合させることによって,リッチな特徴表現を学習することを目的とした,クロスモダリティ特徴遷移(CMFT)プロセスと,クロスモダリティ特徴融合(CMFF)プロセスの2つの学習プロセスからなる。
bratsベンチマークを用いて包括的実験を行い,提案するクロスモダリティ・ディープ・フィーチャー・ラーニング・フレームワークは,ベースライン法や最先端法と比較して,脳腫瘍のセグメンテーション性能を効果的に改善できることを示した。
関連論文リスト
- multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information [1.7359724605901228]
脳腫瘍距離(BraTS)は、臨床診断、治療計画、脳腫瘍の進行のモニタリングにおいて重要な役割を果たす。
腫瘍の出現、サイズ、強度の変動により、自動セグメンテーションは難しい課題である。
セグメント化精度を高めるために多物理情報を統合するトランスフォーマーベースの新しいフレームワークである MultiPI-TransBTS を提案する。
論文 参考訳(メタデータ) (2024-09-18T17:35:19Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Modality-Aware and Shift Mixer for Multi-modal Brain Tumor Segmentation [12.094890186803958]
マルチモーダル画像のモダリティ内依存性とモダリティ間依存性を統合した新しいModality Aware and Shift Mixerを提案する。
具体的には,低レベルのモザイク対関係をモデル化するためのニューロイメージング研究に基づいてModality-Awareモジュールを導入し,モザイクパターンを具体化したModality-Shiftモジュールを開発し,高レベルのモザイク間の複雑な関係を自己注意を通して探索する。
論文 参考訳(メタデータ) (2024-03-04T14:21:51Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - DIGEST: Deeply supervIsed knowledGE tranSfer neTwork learning for brain
tumor segmentation with incomplete multi-modal MRI scans [16.93394669748461]
多モードMRI(Multi-modal magnetic resonance imaging)に基づく脳腫瘍の分節化は、脳腫瘍の診断、治療、術後の評価を支援する重要な役割を担っている。
既存の自動セグメンテーション法によって達成されたインスピレーション性能にもかかわらず、マルチモーダルMRIデータは実際の臨床応用では利用できない。
そこで本研究では,異なる条件下で正確な脳腫瘍セグメント化を実現するDIGEST(Deeply SupervIsed KnowledGE tranSfer neTwork)を提案する。
論文 参考訳(メタデータ) (2022-11-15T09:01:14Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。