論文の概要: Probing Negative Sampling Strategies to Learn GraphRepresentations via
Unsupervised Contrastive Learning
- arxiv url: http://arxiv.org/abs/2104.06317v1
- Date: Tue, 13 Apr 2021 15:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-14 17:31:55.942138
- Title: Probing Negative Sampling Strategies to Learn GraphRepresentations via
Unsupervised Contrastive Learning
- Title(参考訳): 教師なしコントラスト学習によるグラフ表現学習のための負サンプリング戦略の探索
- Authors: Shiyi Chen, Ziao Wang, Xinni Zhang, Xiaofeng Zhang, Dan Peng
- Abstract要約: グラフ表現学習は長い間、さまざまな現実世界のアプリケーションにとって重要かつ困難なタスクでした。
本稿では,教師なしコントラスト学習の最近の進歩に触発されて,ノード毎のコントラスト学習の実施方法について検討する。
- 参考スコア(独自算出の注目度): 4.909151538536424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph representation learning has long been an important yet challenging task
for various real-world applications. However, their downstream tasks are mainly
performed in the settings of supervised or semi-supervised learning. Inspired
by recent advances in unsupervised contrastive learning, this paper is thus
motivated to investigate how the node-wise contrastive learning could be
performed. Particularly, we respectively resolve the class collision issue and
the imbalanced negative data distribution issue. Extensive experiments are
performed on three real-world datasets and the proposed approach achieves the
SOTA model performance.
- Abstract(参考訳): グラフ表現学習は、様々な現実世界のアプリケーションにとって、長い間重要かつ困難な課題であった。
しかし、ダウンストリームタスクは主に教師付きまたは半教師付き学習の設定で実行される。
そこで本論文は,教師なしコントラスト学習の最近の進歩に触発され,ノードワイドコントラスト学習の実施方法について検討する。
特に,クラス衝突問題と不均衡な負のデータ分散問題をそれぞれ解決する。
実世界の3つのデータセットに対して大規模な実験を行い,提案手法によりSOTAモデルの性能が向上する。
関連論文リスト
- ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Time-Series Contrastive Learning against False Negatives and Class
Imbalance [19.049773287966072]
我々は理論分析を行い、それらが基本的な問題、つまりInfoNCEの損失に基づくフレームワークに固有の偽陰性とクラス不均衡を見落としていることを発見した。
インスタンス識別タスクに携わるモデルに対して,SimCLRフレームワークに根ざした直感的な修正を導入する。
半教師付き一貫性分類を行い、マイノリティクラスの代表的能力を高める。
論文 参考訳(メタデータ) (2023-12-19T08:38:03Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - A Study of Forward-Forward Algorithm for Self-Supervised Learning [65.268245109828]
本研究では,自己指導型表現学習におけるフォワードとバックプロパゲーションのパフォーマンスについて検討する。
我々の主な発見は、フォワードフォワードアルゴリズムが(自己教師付き)トレーニング中にバックプロパゲーションに相容れないように機能するのに対し、転送性能は研究されたすべての設定において著しく遅れていることである。
論文 参考訳(メタデータ) (2023-09-21T10:14:53Z) - When hard negative sampling meets supervised contrastive learning [17.173114048398947]
我々は、微調整フェーズ中にハードネガティブサンプリングを組み込んだ新しい教師付きコントラスト学習目標であるSCHaNeを導入する。
SchaNeは、様々なベンチマークで、トップ1の精度で強いベースラインBEiT-3を上回っている。
提案手法は,ImageNet-1kのベースモデルに対して,86.14%の精度で新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2023-08-28T20:30:10Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Adversarial Contrastive Self-Supervised Learning [13.534367890379853]
オンライン・ハード・ネガティブ・ペア・マイニングに基づく自己教師型深層学習パラダイムを提案する。
正の試料対と固負の試料対の両方を考慮した新しい三重項類似の損失を導出した。
論文 参考訳(メタデータ) (2022-02-26T05:57:45Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
そこで本研究では,モデル性能を向上させるために,未ラベルの点群をトレーニングに採用するための半教師付き点群セマンティックセマンティックセマンティックセマンティクスを提案する。
近年の自己監督型タスクのコントラスト損失に触発されて,特徴表現とモデル一般化能力を高めるためのガイド付きポイントコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-10-15T16:38:54Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。