Harnessing spin-qubit decoherence to probe strongly-interacting quantum systems
- URL: http://arxiv.org/abs/2410.22003v1
- Date: Tue, 29 Oct 2024 12:51:55 GMT
- Title: Harnessing spin-qubit decoherence to probe strongly-interacting quantum systems
- Authors: Marcin Płodzień, Sambunath Das, Maciej Lewenstein, Christina Psaroudaki, Katarzyna Roszak,
- Abstract summary: We employ a single spin qubit to probe a strongly interacting system.
By focusing on the XXZ spin chain, we observe diverse dynamics in the qubit evolution.
This approach reveals the power of small quantum systems to probe the properties of large, strongly correlated quantum systems.
- Score: 0.0
- License:
- Abstract: Extracting information from quantum many-body systems remains a key challenge in quantum technologies due to experimental limitations. In this work, we employ a single spin qubit to probe a strongly interacting system, creating an environment conducive to qubit decoherence. By focusing on the XXZ spin chain, we observe diverse dynamics in the qubit evolution, reflecting different parameters of the chain. This demonstrates that a spin qubit can probe both quantitative properties of the spin chain and qualitative characteristics, such as the bipartite entanglement entropy, phase transitions, and perturbation propagation velocity within the system. This approach reveals the power of small quantum systems to probe the properties of large, strongly correlated quantum systems.
Related papers
- Effect of induced transition on the quantum entanglement and coherence
in two-coupled double quantum dots system [0.0]
Double quantum dots (DQDs) appear as a versatile platform for technological breakthroughs in quantum computation and nanotechnology.
This work inspects the thermal entanglement and quantum coherence in two-coupled DODs, where the system is exposed to an external stimulus that induces an electronic transition within each subsystem.
arXiv Detail & Related papers (2022-11-08T22:07:26Z) - Finite-size criticality in fully connected spin models on
superconducting quantum hardware [0.0]
We exploit the new resources offered by quantum algorithms to detect the quantum critical behaviour of fully connected spin$-1/2$ models.
We propose a method based on variational algorithms run on superconducting transmon qubits.
arXiv Detail & Related papers (2022-08-04T16:00:34Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Decoherence scaling transition in the dynamics of quantum information
scrambling [0.0]
We quantify the sensitivity of a controlled Hamiltonian evolution to perturbations that drive the system away from the targeted evolution.
This resilient quantum feature of the controlled dynamics of quantum information is promising for reliable control of large quantum systems.
arXiv Detail & Related papers (2020-05-25T19:36:11Z) - Characterizing quantum correlations in spin chains [0.0]
We show that a single element of the density matrix carries the answer to how quantum is a chain of spins.
This method can be used to tailor and witness highly non-classical effects in many-body systems.
As a proof of principle, we investigate the extend of non-locality and entanglement in ground states and thermal states of experimentally accessible spin chains.
arXiv Detail & Related papers (2020-05-19T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.