Machine-learned 3D Building Vectorization from Satellite Imagery
- URL: http://arxiv.org/abs/2104.06485v1
- Date: Tue, 13 Apr 2021 19:57:30 GMT
- Title: Machine-learned 3D Building Vectorization from Satellite Imagery
- Authors: Yi Wang, Stefano Zorzi, Ksenia Bittner
- Abstract summary: We propose a machine learning based approach for automatic 3D building reconstruction and vectorization.
Taking a single-channel photogrammetric digital surface model (DSM) and panchromatic (PAN) image as input, we first filter out non-building objects and refine the building of shapes.
The refined DSM and the input PAN image are then used through a semantic segmentation network to detect edges and corners of building roofs.
- Score: 7.887221474814986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a machine learning based approach for automatic 3D building
reconstruction and vectorization. Taking a single-channel photogrammetric
digital surface model (DSM) and panchromatic (PAN) image as input, we first
filter out non-building objects and refine the building shapes of input DSM
with a conditional generative adversarial network (cGAN). The refined DSM and
the input PAN image are then used through a semantic segmentation network to
detect edges and corners of building roofs. Later, a set of vectorization
algorithms are proposed to build roof polygons. Finally, the height information
from the refined DSM is added to the polygons to obtain a fully vectorized
level of detail (LoD)-2 building model. We verify the effectiveness of our
method on large-scale satellite images, where we obtain state-of-the-art
performance.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
We propose a simple and novel building mapping method with Hierarchical Transformers, called HiT.
HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads.
Our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-18T10:24:25Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
generative pre-training can boost the performance of fundamental models in 2D vision.
In 3D vision, the over-reliance on Transformer-based backbones and the unordered nature of point clouds have restricted the further development of generative pre-training.
We propose a novel 3D-to-2D generative pre-training method that is adaptable to any point cloud model.
arXiv Detail & Related papers (2023-07-27T16:07:03Z) - Combining visibility analysis and deep learning for refinement of
semantic 3D building models by conflict classification [3.2662392450935416]
We propose a method of combining visibility analysis and neural networks for enriching 3D models with window and door features.
In the method, occupancy voxels are fused with classified point clouds, which provides semantics to voxels.
The semantic voxels and conflicts are combined in a Bayesian network to classify and delineate faccade openings, which are reconstructed using a 3D model library.
arXiv Detail & Related papers (2023-03-10T16:01:30Z) - Elevation Estimation-Driven Building 3D Reconstruction from Single-View
Remote Sensing Imagery [20.001807614214922]
Building 3D reconstruction from remote sensing images has a wide range of applications in smart cities, photogrammetry and other fields.
We propose an efficient DSM estimation-driven reconstruction framework (Building3D) to reconstruct 3D building models from the input single-view remote sensing image.
Our Building3D is rooted in the SFFDE network for building elevation prediction, synchronized with a building extraction network for building masks, and then sequentially performs point cloud reconstruction, surface reconstruction (or CityGML model reconstruction)
arXiv Detail & Related papers (2023-01-11T17:20:30Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
We propose a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student.
By pair-wise aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification.
arXiv Detail & Related papers (2022-07-07T07:23:20Z) - Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
Pre-training [56.81809311892475]
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers.
We propose Point-M2AE, a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds.
arXiv Detail & Related papers (2022-05-28T11:22:53Z) - Geometry-Aware Segmentation of Remote Sensing Images via Implicit Height
Estimation [15.900382629390297]
We introduce a geometry-aware segmentation model that achieves accurate semantic labeling of aerial images via joint height estimation.
We develop a new geometry-aware convolution module that fuses the 3D geometric features from the height decoder branch and the 2D contextual features from the semantic segmentation branch.
The proposed model achieves remarkable performance on both datasets without using any hand-crafted features or post-processing.
arXiv Detail & Related papers (2020-06-10T14:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.