論文の概要: Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression
- arxiv url: http://arxiv.org/abs/2104.06613v1
- Date: Wed, 14 Apr 2021 03:46:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 13:11:57.907079
- Title: Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression
- Title(参考訳): 回帰のための変分オートエンコーダを用いた学習型サイバー物理システムにおけるデータセットシフトの検出
- Authors: Feiyang Cai, Ali I. Ozdagli, Xenofon Koutsoukos
- Abstract要約: 回帰問題に対してデータセットシフトを効果的に検出する手法を提案する。
提案手法は帰納的共形異常検出に基づいており,回帰モデルに変分オートエンコーダを用いる。
自動運転車用オープンソースシミュレータに実装された高度緊急ブレーキシステムを用いて,本手法を実証する。
- 参考スコア(独自算出の注目度): 1.5039745292757671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber-physical systems (CPSs) use learning-enabled components (LECs)
extensively to cope with various complex tasks under high-uncertainty
environments. However, the dataset shifts between the training and testing
phase may lead the LECs to become ineffective to make large-error predictions,
and further, compromise the safety of the overall system. In our paper, we
first provide the formal definitions for different types of dataset shifts in
learning-enabled CPS. Then, we propose an approach to detect the dataset shifts
effectively for regression problems. Our approach is based on the inductive
conformal anomaly detection and utilizes a variational autoencoder for
regression model which enables the approach to take into consideration both LEC
input and output for detecting dataset shifts. Additionally, in order to
improve the robustness of detection, layer-wise relevance propagation (LRP) is
incorporated into our approach. We demonstrate our approach by using an
advanced emergency braking system implemented in an open-source simulator for
self-driving cars. The evaluation results show that our approach can detect
different types of dataset shifts with a small number of false alarms while the
execution time is smaller than the sampling period of the system.
- Abstract(参考訳): サイバー物理システム(CPS)は、学習可能なコンポーネント(LEC)を広範囲に使用し、不確実な環境下で様々な複雑なタスクに対処する。
しかし、トレーニングとテストフェーズ間のデータセットシフトは、LECが大規模なエラー予測を行うのに効果がなくなり、さらにシステム全体の安全性を損なう可能性がある。
本稿ではまず,学習可能なCPSにおけるデータセットシフトの形式的定義について述べる。
次に,回帰問題に対して,データセットシフトを効果的に検出する手法を提案する。
提案手法は帰納的共形異常検出に基づいており,回帰モデルのための変分オートエンコーダを用いて,LEC入力と出力の両方を考慮し,データセットシフトを検出する。
さらに, 検出の堅牢性を向上させるため, レイヤワイド関連伝搬(LRP)を本手法に組み込んだ。
自動運転車のオープンソースシミュレータに実装された緊急ブレーキシステムを用いて,我々のアプローチを実証する。
評価の結果,提案手法は,システムのサンプリング期間よりも実行時間が小さい間に,少ない数の誤報で異なる種類のデータセットシフトを検出できることがわかった。
関連論文リスト
- Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Online Dictionary Learning Based Fault and Cyber Attack Detection for
Power Systems [4.657875410615595]
本稿では,ストリームデータマイニング分類器を活用することで,イベント検出と侵入検出の問題に対処する。
まず、ラベルのないデータから高レベルな特徴を学習して辞書を構築する。
そして、ラベル付きデータは、学習した辞書原子の疎線形結合として表現される。
我々は、これらの余分なコードを利用して、オンライン分類器と効率的な変更検出器を訓練する。
論文 参考訳(メタデータ) (2021-08-24T23:17:58Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Detecting Adversarial Examples in Learning-Enabled Cyber-Physical
Systems using Variational Autoencoder for Regression [4.788163807490198]
ディープニューラルネットワーク(DNN)は堅牢ではなく、敵対的な例によってモデルが誤った予測をする可能性があることが示されている。
本稿では,CPS の回帰に使用される LEC の逆例を効率よく検出する問題について考察する。
自動運転車用オープンソースシミュレータに実装された緊急ブレーキシステムを用いて,その手法を実証する。
論文 参考訳(メタデータ) (2020-03-21T11:15:33Z) - Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems [1.4213973379473654]
サイバー物理システムは、現実世界の不確実性と可変性を処理できる機械学習コンポーネントを使用することで恩恵を受ける。
しかし、ディープニューラルネットワークは、システムの安全性に影響を及ぼす可能性のある、新しいタイプのハザードを導入している。
アウト・オブ・ディストリビューションデータは大きなエラーを引き起こし、安全性を損なう可能性がある。
論文 参考訳(メタデータ) (2020-01-28T17:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。