論文の概要: Natural-Language Multi-Agent Simulations of Argumentative Opinion
Dynamics
- arxiv url: http://arxiv.org/abs/2104.06737v1
- Date: Wed, 14 Apr 2021 09:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 19:50:17.679801
- Title: Natural-Language Multi-Agent Simulations of Argumentative Opinion
Dynamics
- Title(参考訳): 疑似オピニオンダイナミクスの自然言語マルチエージェントシミュレーション
- Authors: Gregor Betz
- Abstract要約: 本稿では、自然言語エージェントに基づく議論モデル(ABMA)を開発する。
ADAは、AIと計算言語学で最近開発されたいわゆるニューラル言語モデルの助けを借りて構築されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper develops a natural-language agent-based model of argumentation
(ABMA). Its artificial deliberative agents (ADAs) are constructed with the help
of so-called neural language models recently developed in AI and computational
linguistics. ADAs are equipped with a minimalist belief system and may generate
and submit novel contributions to a conversation. The natural-language ABMA
allows us to simulate collective deliberation in English, i.e. with arguments,
reasons, and claims themselves -- rather than with their mathematical
representations (as in formal models). This paper uses the natural-language
ABMA to test the robustness of formal reason-balancing models of argumentation
[Maes & Flache 2013, Singer et al. 2019]: First of all, as long as ADAs remain
passive, confirmation bias and homophily updating trigger polarization, which
is consistent with results from formal models. However, once ADAs start to
actively generate new contributions, the evolution of a conservation is
dominated by properties of the agents *as authors*. This suggests that the
creation of new arguments, reasons, and claims critically affects a
conversation and is of pivotal importance for understanding the dynamics of
collective deliberation. The paper closes by pointing out further fruitful
applications of the model and challenges for future research.
- Abstract(参考訳): 本稿では、自然言語エージェントに基づく議論モデル(ABMA)を開発する。
その人工的な熟考エージェント(ADA)は、AIや計算言語学で最近開発されたいわゆるニューラル言語モデルの助けを借りて構築されている。
ADAは最小主義の信念システムを備えており、会話に新しい貢献をし、提出することができる。
自然言語ABMAは、英語で集合的な議論をシミュレートすることを可能にする。
数学的表現(形式的モデルのように)ではなく、議論、理由、主張そのもので。
本稿では自然言語abmaを用いて,議論の形式的推論モデル(maes & flache 2013 singer et al)のロバスト性を検証する。
2019年] まず第一に、adasがパッシブである限り、確認バイアスと、正式なモデルの結果と一致するトリガー偏光を均等に更新する。
しかし、ADAが新しいコントリビューションを積極的に生成し始めると、保存の進化はエージェントの*著者として*によって支配される。
これは、新しい議論、理由、主張の作成が会話に重大な影響を与え、集合的議論の力学を理解する上で重要なものであることを示唆している。
この論文は、将来の研究におけるモデルと課題のさらなる実りある応用を指摘することで締めくくっている。
関連論文リスト
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
推論は人間の知性の本質的な要素であり、批判的に考える能力において基本的な役割を果たす。
自然言語処理における最近の進歩は、トランスフォーマーに基づく言語モデルの出現とともに、これらのモデルが推論能力を示す可能性を示唆している。
言語モデルにおける推論について議論が続いているが、これらのモデルが実際に推論できる程度に注目することは容易ではない。
論文 参考訳(メタデータ) (2024-10-07T02:31:47Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
本稿では、ジェネレーティブAIにおける最近の進歩と技術に関する体系的なレビューと分析について述べる。
生成AIがこれまで行った大きな影響は、大きな言語モデルの開発による言語生成である。
論文は、責任あるAIの原則と、これらの生成モデルの持続可能性と成長に必要な倫理的考察から締めくくられる。
論文 参考訳(メタデータ) (2024-05-17T18:03:59Z) - A Philosophical Introduction to Language Models -- Part I: Continuity
With Classic Debates [0.05657375260432172]
この記事では、哲学者の言語モデルに関するプライマーとしての役割と、その重要性に関する世論調査としての役割について述べる。
言語モデルの成功は、人工ニューラルネットワークに関する長年の仮定に挑戦するものだ、と我々は主張する。
これは、共用紙(Part II)のステージを設定し、言語モデルの内部動作を探索するための新しい経験的手法に転換する。
論文 参考訳(メタデータ) (2024-01-08T14:12:31Z) - Explanatory Argument Extraction of Correct Answers in Resident Medical
Exams [5.399800035598185]
本稿では, 正しい回答に対する説明的議論だけでなく, 誤った回答が正しい理由を推論するための議論を含む新しいデータセットを提案する。
このベンチマークにより,医師が作成した正しい回答の説明を識別する新しい抽出タスクを構築できる。
論文 参考訳(メタデータ) (2023-12-01T13:22:35Z) - TRIGO: Benchmarking Formal Mathematical Proof Reduction for Generative
Language Models [68.65075559137608]
本稿では, ATP ベンチマーク TRIGO を提案する。このベンチマークでは, ステップバイステップの証明で三角法式を縮小するだけでなく, 論理式上で生成する LM の推論能力を評価する。
我々は、Webから三角法式とその縮小フォームを収集し、手作業で単純化プロセスに注釈を付け、それをリーン形式言語システムに翻訳する。
我々はLean-Gymに基づく自動生成装置を開発し、モデルの一般化能力を徹底的に分析するために、様々な困難と分布のデータセット分割を作成する。
論文 参考訳(メタデータ) (2023-10-16T08:42:39Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Language Models as Inductive Reasoners [125.99461874008703]
本稿では,帰納的推論のための新しいパラダイム(タスク)を提案し,自然言語の事実から自然言語規則を誘導する。
タスクのための1.2kルールファクトペアを含むデータセットDEERを作成し,ルールと事実を自然言語で記述する。
我々は、事前訓練された言語モデルが自然言語の事実から自然言語規則をいかに誘導できるかを、初めてかつ包括的な分析を行う。
論文 参考訳(メタデータ) (2022-12-21T11:12:14Z) - NaturalProver: Grounded Mathematical Proof Generation with Language
Models [84.2064569475095]
自然数理言語における定理証明は、数学の進歩と教育において中心的な役割を果たす。
本研究では,背景参照を条件づけて証明を生成する言語モデルであるNaturalProverを開発する。
NaturalProverは、短い(2-6ステップ)証明を必要とするいくつかの定理を証明でき、40%の時間で正しいと評価された次のステップの提案を提供することができる。
論文 参考訳(メタデータ) (2022-05-25T17:01:18Z) - Multilingual Generative Language Models for Zero-Shot Cross-Lingual
Event Argument Extraction [80.61458287741131]
ゼロショット言語間イベント引数抽出(EAE)における多言語事前学習型生成言語モデルの活用について検討する。
EAEを言語生成タスクとして定式化することにより、イベント構造を効果的にエンコードし、引数間の依存関係をキャプチャする。
提案するモデルでは,多言語事前学習型生成言語モデルを用いて,入力文から抽出した引数で言語に依存しないテンプレートを補う文を生成する。
論文 参考訳(メタデータ) (2022-03-15T23:00:32Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
比較的少ないパラメータとトレーニングステップを持つ言語モデルは、最近の大規模なデータセットでそれを上回るパフォーマンスを得ることができる。
二項選択タスクにおける常識推論のための絶対的最先端結果を生成する。
より小さなモデルの堅牢性は、構成性の観点から理解されるべきである。
論文 参考訳(メタデータ) (2022-01-23T22:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。