論文の概要: PEIRCE: Unifying Material and Formal Reasoning via LLM-Driven Neuro-Symbolic Refinement
- arxiv url: http://arxiv.org/abs/2504.04110v1
- Date: Sat, 05 Apr 2025 09:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:15:07.611688
- Title: PEIRCE: Unifying Material and Formal Reasoning via LLM-Driven Neuro-Symbolic Refinement
- Title(参考訳): PEIRCE:LLM駆動型神経-サイバリックリファインメントによる材料統合とホルマリン反応
- Authors: Xin Quan, Marco Valentino, Danilo S. Carvalho, Dhairya Dalal, André Freitas,
- Abstract要約: PEIRCEは、反復的予想批判プロセスを通じて物質と形式的推論を統合するために設計された、神経象徴的なフレームワークである。
自然言語説明生成の領域において,その能力を実証する。
- 参考スコア(独自算出の注目度): 13.042323420379187
- License:
- Abstract: A persistent challenge in AI is the effective integration of material and formal inference - the former concerning the plausibility and contextual relevance of arguments, while the latter focusing on their logical and structural validity. Large Language Models (LLMs), by virtue of their extensive pre-training on large textual corpora, exhibit strong capabilities in material inference. However, their reasoning often lacks formal rigour and verifiability. At the same time, LLMs' linguistic competence positions them as a promising bridge between natural and formal languages, opening up new opportunities for combining these two modes of reasoning. In this paper, we introduce PEIRCE, a neuro-symbolic framework designed to unify material and formal inference through an iterative conjecture-criticism process. Within this framework, LLMs play the central role of generating candidate solutions in natural and formal languages, which are then evaluated and refined via interaction with external critique models. These critiques include symbolic provers, which assess formal validity, as well as soft evaluators that measure the quality of the generated arguments along linguistic and epistemic dimensions such as plausibility, coherence, and parsimony. While PEIRCE is a general-purpose framework, we demonstrate its capabilities in the domain of natural language explanation generation - a setting that inherently demands both material adequacy and formal correctness.
- Abstract(参考訳): AIにおける永続的な課題は、物質的および形式的推論の効果的な統合であり、前者は議論の妥当性と文脈的関連性について、後者は論理的および構造的妥当性に焦点を当てている。
大規模言語モデル (LLM) は、大規模なテキストコーパスの事前学習により、材料推論において強力な能力を示す。
しかし、それらの推論は形式的な厳密さと妥当性に欠けることが多い。
同時に、LLMsの言語能力は、これらを自然言語と形式言語の間の有望な橋として位置づけ、これら2つの推論方法を組み合わせる新たな機会を開く。
本稿では,物質と形式的推論を反復的予想批判プロセスを通じて統一する神経象徴的枠組みであるPEIRCEを紹介する。
この枠組みの中では、LLMは自然および形式言語における候補解を生成する中心的な役割を担い、その後、外部批判モデルとの相互作用を通じて評価され、洗練される。
これらの批判には、形式的妥当性を評価する記号的証明者や、可視性、コヒーレンス、パーシモニーなどの言語的およびてんかん的次元に沿って生成された議論の質を測定するソフトな評価者が含まれる。
PEIRCEは汎用的なフレームワークであるが、自然言語説明生成の領域においてその能力を実証する。
関連論文リスト
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - IOLBENCH: Benchmarking LLMs on Linguistic Reasoning [8.20398036986024]
IOL(International Linguistics Olympiad)問題に基づく新しいベンチマークであるIOLBENCHを紹介する。
このデータセットは、文法、形態学、音韻学、意味論をテストする様々な問題を含んでいる。
最も先進的なモデルでさえ、言語的な複雑さの複雑さを扱うのに苦労している。
論文 参考訳(メタデータ) (2025-01-08T03:15:10Z) - Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
推論は人間の知性の本質的な要素であり、批判的に考える能力において基本的な役割を果たす。
自然言語処理における最近の進歩は、トランスフォーマーに基づく言語モデルの出現とともに、これらのモデルが推論能力を示す可能性を示唆している。
言語モデルにおける推論について議論が続いているが、これらのモデルが実際に推論できる程度に注目することは容易ではない。
論文 参考訳(メタデータ) (2024-10-07T02:31:47Z) - Autoformalization of Game Descriptions using Large Language Models [3.5083201638203154]
ゲーム理論シナリオの自動形式化のためのフレームワークを提案する。
これは、自然言語の記述を形式的解法に適した形式論理表現に変換する。
GPT-4oと自然言語問題記述のデータセットを用いたフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-09-18T20:18:53Z) - Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity [0.0]
大規模言語モデル(LLM)は、自然言語処理(NLP)アプリケーションにおいて、ますます高度でユビキタスなものになりつつある。
本稿では,テクストモデルにおける文脈的接地のための新しい枠組みについて述べる。
本研究は, 医療, 法制度, 社会サービスなどのセンシティブな分野におけるLCMの展開に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-08-07T18:12:02Z) - Enhancing Ethical Explanations of Large Language Models through
Iterative Symbolic Refinement [5.108863224378874]
本稿では,ハイブリッド・ニューロシンボリック・テクニックが倫理的説明の論理的妥当性とアライメントをいかに向上させるかを検討する。
本稿では,大規模言語モデルと外部の後方鎖型ソルバを統合した導出型フレームワーク Logic-Explainer を提案する。
経験的分析により、Logic-Explainerは、コンテキスト内学習法とChain-of-Thoughtを通じて生成された説明を改善することができることを示した。
論文 参考訳(メタデータ) (2024-02-01T16:39:51Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。