Towards a framework for evaluating the safety, acceptability and
efficacy of AI systems for health: an initial synthesis
- URL: http://arxiv.org/abs/2104.06910v1
- Date: Wed, 14 Apr 2021 15:00:39 GMT
- Title: Towards a framework for evaluating the safety, acceptability and
efficacy of AI systems for health: an initial synthesis
- Authors: Jessica Morley, Caroline Morton, Kassandra Karpathakis, Mariarosaria
Taddeo, Luciano Floridi
- Abstract summary: We aim to set out a minimally viable framework for evaluating the safety, acceptability and efficacy of AI systems for healthcare.
We do this by conducting a systematic search across Scopus, PubMed and Google Scholar.
The result is a framework to guide AI system developers, policymakers, and regulators through a sufficient evaluation of an AI system designed for use in healthcare.
- Score: 0.2936007114555107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential presented by Artificial Intelligence (AI) for healthcare has
long been recognised by the technical community. More recently, this potential
has been recognised by policymakers, resulting in considerable public and
private investment in the development of AI for healthcare across the globe.
Despite this, excepting limited success stories, real-world implementation of
AI systems into front-line healthcare has been limited. There are numerous
reasons for this, but a main contributory factor is the lack of internationally
accepted, or formalised, regulatory standards to assess AI safety and impact
and effectiveness. This is a well-recognised problem with numerous ongoing
research and policy projects to overcome it. Our intention here is to
contribute to this problem-solving effort by seeking to set out a minimally
viable framework for evaluating the safety, acceptability and efficacy of AI
systems for healthcare. We do this by conducting a systematic search across
Scopus, PubMed and Google Scholar to identify all the relevant literature
published between January 1970 and November 2020 related to the evaluation of:
output performance; efficacy; and real-world use of AI systems, and
synthesising the key themes according to the stages of evaluation: pre-clinical
(theoretical phase); exploratory phase; definitive phase; and post-market
surveillance phase (monitoring). The result is a framework to guide AI system
developers, policymakers, and regulators through a sufficient evaluation of an
AI system designed for use in healthcare.
Related papers
- Evaluating AI Evaluation: Perils and Prospects [8.086002368038658]
This paper contends that the prevalent evaluation methods for these systems are fundamentally inadequate.
I argue that a reformation is required in the way we evaluate AI systems and that we should look towards cognitive sciences for inspiration.
arXiv Detail & Related papers (2024-07-12T12:37:13Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - RAISE -- Radiology AI Safety, an End-to-end lifecycle approach [5.829180249228172]
The integration of AI into radiology introduces opportunities for improved clinical care provision and efficiency.
The focus should be on ensuring models meet the highest standards of safety, effectiveness and efficacy.
The roadmap presented herein aims to expedite the achievement of deployable, reliable, and safe AI in radiology.
arXiv Detail & Related papers (2023-11-24T15:59:14Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
The principles-based ethics assurance argument pattern is one proposal in the AI ethics landscape.
This paper presents the interim findings of a case study applying this ethics assurance framework to the use of Dora, an AI-based telemedicine system.
arXiv Detail & Related papers (2023-05-23T16:04:59Z) - Organizational Governance of Emerging Technologies: AI Adoption in
Healthcare [43.02293389682218]
The Health AI Partnership aims to better define the requirements for adequate organizational governance of AI systems in healthcare settings.
This is one of the most detailed qualitative analyses to date of the current governance structures and processes involved in AI adoption by health systems in the United States.
We hope these findings can inform future efforts to build capabilities to promote the safe, effective, and responsible adoption of emerging technologies in healthcare.
arXiv Detail & Related papers (2023-04-25T18:30:47Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.