IQDet: Instance-wise Quality Distribution Sampling for Object Detection
- URL: http://arxiv.org/abs/2104.06936v1
- Date: Wed, 14 Apr 2021 15:57:22 GMT
- Title: IQDet: Instance-wise Quality Distribution Sampling for Object Detection
- Authors: Yuchen Ma, Songtao Liu, Zeming Li, Jian Sun
- Abstract summary: We propose a dense object detector with an instance-wise sampling strategy, named IQDet.
Our best model achieves 51.6 AP, outperforming all existing state-of-the-art one-stage detectors and it is completely cost-free in inference time.
- Score: 25.31113751275204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a dense object detector with an instance-wise sampling strategy,
named IQDet. Instead of using human prior sampling strategies, we first extract
the regional feature of each ground-truth to estimate the instance-wise quality
distribution. According to a mixture model in spatial dimensions, the
distribution is more noise-robust and adapted to the semantic pattern of each
instance. Based on the distribution, we propose a quality sampling strategy,
which automatically selects training samples in a probabilistic manner and
trains with more high-quality samples. Extensive experiments on MS COCO show
that our method steadily improves baseline by nearly 2.4 AP without bells and
whistles. Moreover, our best model achieves 51.6 AP, outperforming all existing
state-of-the-art one-stage detectors and it is completely cost-free in
inference time.
Related papers
- Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit [0.0]
This paper proposes a new sampling strategy for global fit called Gradient and Uncertainty Enhanced Sequential Sampling (GUESS)
We show that GUESS achieved on average the highest sample efficiency compared to other surrogate-based strategies on the tested examples.
arXiv Detail & Related papers (2023-09-29T19:49:39Z) - PCB-RandNet: Rethinking Random Sampling for LIDAR Semantic Segmentation
in Autonomous Driving Scene [15.516687293651795]
We propose a new Polar Cylinder Balanced Random Sampling method for semantic segmentation of large-scale LiDAR point clouds.
In addition, a sampling consistency loss is introduced to further improve the segmentation performance and reduce the model's variance under different sampling methods.
Our approach produces excellent performance on both SemanticKITTI and SemanticPOSS benchmarks, achieving a 2.8% and 4.0% improvement, respectively.
arXiv Detail & Related papers (2022-09-28T02:59:36Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - Sampling Through the Lens of Sequential Decision Making [9.101505546901999]
We propose a reward-guided sampling strategy called Adaptive Sample with Reward (ASR)
Our approach optimally adjusts the sampling process to achieve optimal performance.
Empirical results in information retrieval and clustering demonstrate ASR's superb performance across different datasets.
arXiv Detail & Related papers (2022-08-17T04:01:29Z) - Sampling from Discrete Energy-Based Models with Quality/Efficiency
Trade-offs [3.491202838583993]
Energy-Based Models (EBMs) allow for extremely flexible specifications of probability distributions.
They do not provide a mechanism for obtaining exact samples from these distributions.
We propose a new approximate sampling technique, Quasi Rejection Sampling (QRS), that allows for a trade-off between sampling efficiency and sampling quality.
arXiv Detail & Related papers (2021-12-10T17:51:37Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Reparameterized Sampling for Generative Adversarial Networks [71.30132908130581]
We propose REP-GAN, a novel sampling method that allows general dependent proposals by REizing the Markov chains into the latent space of the generator.
Empirically, extensive experiments on synthetic and real datasets demonstrate that our REP-GAN largely improves the sample efficiency and obtains better sample quality simultaneously.
arXiv Detail & Related papers (2021-07-01T10:34:55Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
This paper proposes a one-for-more training objective that takes the generalization ability of selected samples as a loss function.
Our proposed one-for-more based sampler can be seamlessly integrated into the ReID training framework.
arXiv Detail & Related papers (2020-12-10T06:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.