論文の概要: Membership-Mappings for Data Representation Learning
- arxiv url: http://arxiv.org/abs/2104.07060v1
- Date: Wed, 14 Apr 2021 18:10:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 08:36:45.710648
- Title: Membership-Mappings for Data Representation Learning
- Title(参考訳): データ表現学習のためのメンバーシップ・マッピング
- Authors: Mohit Kumar, Bernhard A. Moser, Lukas Fischer, Bernhard Freudenthaler
- Abstract要約: 本研究は,メンバーシップ・マッピングに基づくデータ表現モデルの変分学習に対する分析的アプローチを概説する。
Bre Divergence Based Conditionally Deep Autoencoderと呼ばれるDeep Autoencoderの別のアイデアが提示される。
- 参考スコア(独自算出の注目度): 11.764605963190817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces using measure theoretic basis the notion of
membership-mapping for representing data points through attribute values
(motivated by fuzzy theory). A property of the membership-mapping, that can be
exploited for data representation learning, is of providing an interpolation on
the given data points in the data space. The study outlines an analytical
approach to the variational learning of a membership-mappings based data
representation model. An alternative idea of deep autoencoder, referred to as
Bregman Divergence Based Conditionally Deep Autoencoder (that consists of
layers such that each layer learns data representation at certain abstraction
level through a membership-mappings based autoencoder), is presented.
Experiments are provided to demonstrate the competitive performance of the
proposed framework in classifying high-dimensional feature vectors and in
rendering robustness to the classification.
- Abstract(参考訳): 本研究では,データポイントを属性値(ファジィ理論による動機付け)で表すためのメンバシップマッピングの概念を測度論的基礎を用いて導入する。
データ表現学習に活用できるメンバシップマッピングの特性は、データ空間内の与えられたデータポイントに対する補間を提供することである。
本研究は,メンバーシップ・マッピングに基づくデータ表現モデルの変分学習に対する分析的アプローチを概説する。
ディープオートエンコーダの別のアイデアとして、Bregman Divergence Based Conditionally Deep Autoencoder(各レイヤがメンバシップマッピングベースのオートエンコーダを通じて、ある抽象化レベルでデータ表現を学習する層で構成される)がある。
提案するフレームワークの高次元特徴ベクトルの分類における競合性能と,その分類に対するロバスト性を示す実験を行った。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Statistical signatures of abstraction in deep neural networks [0.0]
我々は、ベンチマークデータセットに基づいてトレーニングされたDeep Belief Network(DBN)において、抽象表現がどのように現れるかを研究する。
表現は最大関連性の原理によって決定される普遍モデルに近づくことを示す。
また、プラスチック度は脳のそれと同じような深さで増加することも示しています。
論文 参考訳(メタデータ) (2024-07-01T14:13:11Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Deciphering 'What' and 'Where' Visual Pathways from Spectral Clustering of Layer-Distributed Neural Representations [15.59251297818324]
本稿では,ニューラルネットワークのアクティベーションに含まれる情報をグループ化する手法を提案する。
すべてのレイヤの機能を利用して、モデルのどの部分が関連する情報を含んでいるのかを推測する必要をなくします。
論文 参考訳(メタデータ) (2023-12-11T01:20:34Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Learning ECG signal features without backpropagation [0.0]
時系列型データの表現を生成する新しい手法を提案する。
この方法は理論物理学の考えに頼り、データ駆動方式でコンパクトな表現を構築する。
本稿では,ECG信号分類の課題に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-07-04T21:35:49Z) - A topological classifier to characterize brain states: When shape
matters more than variance [0.0]
トポロジカルデータ分析(TDA)は、永続化記述子を用いてデータ雲の形状を研究することを目的としている。
本稿では,データサブセットへの新たな入力の追加によるトポロジカルメトリクスの定量化変化の原理に基づいた,TDAに基づく新しい分類手法を提案する。
論文 参考訳(メタデータ) (2023-03-07T20:45:15Z) - Metric Distribution to Vector: Constructing Data Representation via
Broad-Scale Discrepancies [15.40538348604094]
本稿では,各データに対するベクトル表現に分布特性を抽出するために, $mathbfMetricDistribution2vec$ という新しい埋め込み方式を提案する。
本研究では,広範囲な実世界構造グラフデータセット上での教師付き予測タスクにおける表現法の適用と有効性を示す。
論文 参考訳(メタデータ) (2022-10-02T03:18:30Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Deep Learning feature selection to unhide demographic recommender
systems factors [63.732639864601914]
行列分解モデルは意味的知識を含まない因子を生成する。
DeepUnHideは、協調フィルタリングレコメンデータシステムにおいて、ユーザとアイテムファクタから、人口統計情報を抽出することができる。
論文 参考訳(メタデータ) (2020-06-17T17:36:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。