論文の概要: Convolutional autoencoder-based multimodal one-class classification
- arxiv url: http://arxiv.org/abs/2309.14090v1
- Date: Mon, 25 Sep 2023 12:31:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 15:39:53.246376
- Title: Convolutional autoencoder-based multimodal one-class classification
- Title(参考訳): 畳み込みオートエンコーダに基づくマルチモーダルワンクラス分類
- Authors: Firas Laakom, Fahad Sohrab, Jenni Raitoharju, Alexandros Iosifidis,
Moncef Gabbouj
- Abstract要約: 1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
- 参考スコア(独自算出の注目度): 80.52334952912808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-class classification refers to approaches of learning using data from a
single class only. In this paper, we propose a deep learning one-class
classification method suitable for multimodal data, which relies on two
convolutional autoencoders jointly trained to reconstruct the positive input
data while obtaining the data representations in the latent space as compact as
possible. During inference, the distance of the latent representation of an
input to the origin can be used as an anomaly score. Experimental results using
a multimodal macroinvertebrate image classification dataset show that the
proposed multimodal method yields better results as compared to the unimodal
approach. Furthermore, study the effect of different input image sizes, and we
investigate how recently proposed feature diversity regularizers affect the
performance of our approach. We show that such regularizers improve
performance.
- Abstract(参考訳): 1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
本稿では,マルチモーダルデータに適した深層学習型一クラス分類手法を提案する。これは2つの畳み込みオートエンコーダを併用して,潜在空間におけるデータ表現を可能な限りコンパクトにしつつ,正の入力データを再構築する。
推論中は、原点への入力の潜在表現の距離を異常スコアとして用いることができる。
マルチモーダル・マクロ無脊椎動物画像分類データセットを用いた実験結果から, 提案手法は単一モーダル法に比べ, より良い結果が得られることが示された。
さらに,異なる入力画像サイズの影響について検討し,最近提案された特徴量正規化器が提案手法の性能に与える影響について検討した。
このようなレギュラライザがパフォーマンスを向上させることを示す。
関連論文リスト
- An Enhanced Federated Prototype Learning Method under Domain Shift [36.73020712815063]
Federated Learning (FL)は、プライベートデータを共有することなく、協調的な機械学習トレーニングを可能にする。
最近の論文では、分散対応のデュアルレベルプロトタイプクラスタリングを導入し、新しい$alpha$-sparsityプロトタイプロスを用いる。
Digit-5、Office-10、DomainNetデータセットの評価は、我々の手法が既存のアプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-09-27T09:28:27Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Generalized One-Class Learning Using Pairs of Complementary Classifiers [41.64645294104883]
1クラス学習は、単一のクラスでのみアノテーションが利用できるデータにモデルを適合させる古典的な問題である。
本稿では,一級学習の新たな目的を探求し,これを一般化一級識別サブスペース(GODS)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-24T18:52:05Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Mixing Consistent Deep Clustering [3.5786621294068373]
良い潜在表現は、2つの潜在表現の線形を復号する際に意味的に混合出力を生成する。
本稿では,表現をリアルに見せるための混合一貫性深層クラスタリング手法を提案する。
提案手法は,クラスタリング性能を向上させるために,既存のオートエンコーダに付加可能であることを示す。
論文 参考訳(メタデータ) (2020-11-03T19:47:06Z) - Learning Inter- and Intra-manifolds for Matrix Factorization-based
Multi-Aspect Data Clustering [3.756550107432323]
近年,マルチビューやマルチタイプリレーショナルデータなど,複数の側面を持つデータのクラスタリングが普及している。
我々は,データクラスタリングのための多種多様な多様体を学習するために,異なるデータ型(またはビュー)のデータポイントの距離情報を利用するNMFフレームワークに多様体を組み込むことを提案する。
いくつかのデータセットの結果から,提案手法は精度と効率の両面において,最先端のマルチアスペクトデータクラスタリング手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-07T02:21:08Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z) - Deep Inverse Feature Learning: A Representation Learning of Error [6.5358895450258325]
本稿では,機械学習における誤りに対する新たな視点を紹介し,表現学習手法として逆特徴学習(IFL)を提案する。
逆特徴学習法は、深層クラスタリング手法に基づいて、誤り表現の定性的形式を特徴として求める。
実験の結果,提案手法は分類,特にクラスタリングにおいて有望な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2020-03-09T17:45:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。