On quantum neural networks
- URL: http://arxiv.org/abs/2104.07106v1
- Date: Mon, 12 Apr 2021 18:30:30 GMT
- Title: On quantum neural networks
- Authors: Alexandr A. Ezhov
- Abstract summary: We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
- Score: 91.3755431537592
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The early definition of a quantum neural network as a new field that combines
the classical neurocomputing with quantum computing was rather vague and
satisfactory in the 2000s. The widespread in 2020 modern definition of a
quantum neural network as a model or machine learning algorithm that combines
the functions of quantum computing with artificial neural networks deprives
quantum neural networks of their fundamental importance. We argue that the
concept of a quantum neural network should be defined in terms of its most
general function as a tool for representing the amplitude of an arbitrary
quantum process. Our reasoning is based on the use of the Feynman path integral
formulation in quantum mechanics. This approach has been used in many works to
investigate the main problem of quantum cosmology, such as the origin of the
Universe. In fact, the question of whether our Universe is a quantum computer
was posed by Seth Lloyd, who gave the answer is yes, but we argue that the
universe can be thought of as a quantum neural network.
Related papers
- Deep Quantum Graph Dreaming: Deciphering Neural Network Insights into
Quantum Experiments [0.5242869847419834]
We use a technique called $inception$ or $deep$ $dreaming$ to explore what neural networks learn about quantum optics experiments.
Our story begins by training deep neural networks on the properties of quantum systems.
We find that the network can shift the initial distribution of properties of the quantum system, and we can conceptualize the learned strategies of the neural network.
arXiv Detail & Related papers (2023-09-13T16:13:54Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Experimental verification of the quantum nature of a neural network [0.0]
I discuss what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
I suggest a possible experiment that could extract entanglement from the quantum functioning rules (maps) of an otherwise classical neural network.
arXiv Detail & Related papers (2022-08-23T06:33:59Z) - Are classical neural networks quantum? [0.0]
Neural networks are being used to improve the probing of the state spaces of many particle systems as approximations to wavefunctions.
I discuss here what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
arXiv Detail & Related papers (2022-05-31T09:33:51Z) - A prototype of quantum von Neumann architecture [0.0]
We propose a model of universal quantum computer system, the quantum version of the von Neumann architecture.
It uses ebits as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit.
Our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems.
arXiv Detail & Related papers (2021-12-17T06:33:31Z) - Exploration of Quantum Neural Architecture by Mixing Quantum Neuron
Designs [23.747282946165097]
This paper makes the first attempt to mix quantum neuron designs to build quantum neural architectures.
Existing quantum neuron designs may be quite different but complementary, such as neurons from variation quantum circuits (VQC) and QuantumFlow.
We propose to mix them together and figure out a way to connect them seamlessly without additional costly measurement.
arXiv Detail & Related papers (2021-09-08T17:47:54Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.