Experimental verification of the quantum nature of a neural network
- URL: http://arxiv.org/abs/2209.07577v4
- Date: Thu, 10 Oct 2024 14:16:30 GMT
- Title: Experimental verification of the quantum nature of a neural network
- Authors: Andrei T. Patrascu,
- Abstract summary: I discuss what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
I suggest a possible experiment that could extract entanglement from the quantum functioning rules (maps) of an otherwise classical neural network.
- Score: 0.0
- License:
- Abstract: Neural networks are being used to improve the probing of the state spaces of many particle systems as approximations to wavefunctions and in order to avoid the recurring sign problem of quantum monte-carlo. One may ask whether the usual classical neural networks have some actual hidden quantum properties that make them such suitable tools for a highly coupled quantum problem. I discuss here what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants. I suggest that a system can be quantum both due to its fundamental quantum constituents and due to the rules of its functioning, therefore, we can obtain entanglement both due to the quantum constituents' nature and due to the functioning rules, or, in category theory terms, both due to the quantum nature of the objects of a category and of the maps. From a practical point of view, I suggest a possible experiment that could extract entanglement from the quantum functioning rules (maps) of an otherwise classical (from the point of view of the constituents) neural network.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Are classical neural networks quantum? [0.0]
Neural networks are being used to improve the probing of the state spaces of many particle systems as approximations to wavefunctions.
I discuss here what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
arXiv Detail & Related papers (2022-05-31T09:33:51Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
We propose a framework that builds quantum neurons based on kernel machines.
We present here a neuron that applies a tensor-product feature mapping to an exponentially larger space.
It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit.
arXiv Detail & Related papers (2022-02-25T04:57:41Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - Quantifying Unknown Entanglement by Neural Networks [1.6629141734354616]
We train neural networks to quantify unknown entanglement, where the input features of neural networks are the outcome statistics data produced by locally measuring target quantum states.
It turns out that the neural networks we train have very good performance in quantifying unknown quantum states.
arXiv Detail & Related papers (2021-04-26T12:50:25Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Quantum entanglement recognition [0.0]
We formulate a framework for probing entanglement based on machine learning techniques.
We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error.
arXiv Detail & Related papers (2020-07-28T18:00:00Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.