Are classical neural networks quantum?
- URL: http://arxiv.org/abs/2206.00005v1
- Date: Tue, 31 May 2022 09:33:51 GMT
- Title: Are classical neural networks quantum?
- Authors: Andrei T. Patrascu
- Abstract summary: Neural networks are being used to improve the probing of the state spaces of many particle systems as approximations to wavefunctions.
I discuss here what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are being used to improve the probing of the state spaces of
many particle systems as approximations to wavefunctions and in order to avoid
the recurring sign problem of quantum monte-carlo. One may ask whether the
usual classical neural networks have some actual hidden quantum properties that
make them such suitable tools for a highly coupled quantum problem. I discuss
here what makes a system quantum and to what extent we can interpret a neural
network as having quantum remnants.
Related papers
- Entanglement transition in deep neural quantum states [0.0]
We show how information propagation in deep neural networks impacts the physical entanglement properties of deep neural quantum states.
With this bridge we can identify optimal neural quantum state hyper parameter regimes for representing area as well as volume law entangled states.
This advance of our understanding of network configurations for accurate quantum state representation helps to develop effective representations to deal with volume-law quantum states.
arXiv Detail & Related papers (2023-12-19T08:40:23Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Experimental verification of the quantum nature of a neural network [0.0]
I discuss what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
I suggest a possible experiment that could extract entanglement from the quantum functioning rules (maps) of an otherwise classical neural network.
arXiv Detail & Related papers (2022-08-23T06:33:59Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
We propose a framework that builds quantum neurons based on kernel machines.
We present here a neuron that applies a tensor-product feature mapping to an exponentially larger space.
It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit.
arXiv Detail & Related papers (2022-02-25T04:57:41Z) - Quantifying Unknown Entanglement by Neural Networks [1.6629141734354616]
We train neural networks to quantify unknown entanglement, where the input features of neural networks are the outcome statistics data produced by locally measuring target quantum states.
It turns out that the neural networks we train have very good performance in quantifying unknown quantum states.
arXiv Detail & Related papers (2021-04-26T12:50:25Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.