論文の概要: Polynomial Networks in Deep Classifiers
- arxiv url: http://arxiv.org/abs/2104.07916v1
- Date: Fri, 16 Apr 2021 06:41:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 14:22:25.657872
- Title: Polynomial Networks in Deep Classifiers
- Title(参考訳): 深層分類器における多項式ネットワーク
- Authors: Grigorios G Chrysos, Markos Georgopoulos, Jiankang Deng, Yannis
Panagakis
- Abstract要約: 我々は深層ニューラルネットワークの研究を統一的な枠組みで行った。
私たちのフレームワークは、各モデルの誘導バイアスに関する洞察を提供します。
提案モデルの有効性を,標準画像および音声分類ベンチマークで評価した。
- 参考スコア(独自算出の注目度): 55.90321402256631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have been the driving force behind the success in
classification tasks, e.g., object and audio recognition. Impressive results
and generalization have been achieved by a variety of recently proposed
architectures, the majority of which are seemingly disconnected. In this work,
we cast the study of deep classifiers under a unifying framework. In
particular, we express state-of-the-art architectures (e.g., residual and
non-local networks) in the form of different degree polynomials of the input.
Our framework provides insights on the inductive biases of each model and
enables natural extensions building upon their polynomial nature. The efficacy
of the proposed models is evaluated on standard image and audio classification
benchmarks. The expressivity of the proposed models is highlighted both in
terms of increased model performance as well as model compression. Lastly, the
extensions allowed by this taxonomy showcase benefits in the presence of
limited data and long-tailed data distributions. We expect this taxonomy to
provide links between existing domain-specific architectures.
- Abstract(参考訳): ディープニューラルネットワークは、オブジェクト認識やオーディオ認識など、分類タスクの成功の原動力となっている。
印象的な結果と一般化は、最近提案された様々なアーキテクチャによって達成されている。
本研究では,深層分類器の研究を統一的な枠組みで行った。
特に、入力の異なる次数多項式の形で最先端アーキテクチャ(残留ネットワークや非局所ネットワークなど)を表現する。
我々のフレームワークは各モデルの帰納的バイアスについての洞察を提供し、その多項式の性質に基づく自然拡張を可能にする。
提案モデルの有効性を,標準画像および音声分類ベンチマークで評価した。
提案したモデルの表現性はモデル性能の向上とモデル圧縮の両方の観点から強調される。
最後に、この分類で許される拡張は、限られたデータと長い尾のデータ分布の存在において利点を示す。
この分類法が既存のドメイン固有のアーキテクチャ間のリンクを提供することを期待している。
関連論文リスト
- Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
本稿では,従来の注意機構の2次複雑さに対処する新しいアーキテクチャであるOrchidを紹介する。
このアーキテクチャのコアには、新しいデータ依存のグローバル畳み込み層があり、入力シーケンスに条件付きカーネルを文脈的に適応させる。
言語モデリングや画像分類など,複数の領域にまたがるモデルの評価を行い,その性能と汎用性を強調した。
論文 参考訳(メタデータ) (2024-02-28T17:36:45Z) - Fine-Grained ImageNet Classification in the Wild [0.0]
ロバストネステストは、典型的なモデル評価段階で気づかないいくつかの脆弱性やバイアスを明らかにすることができる。
本研究では,階層的知識の助けを借りて,密接に関連するカテゴリのきめ細かい分類を行う。
論文 参考訳(メタデータ) (2023-03-04T12:25:07Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Visualization Of Class Activation Maps To Explain AI Classification Of
Network Packet Captures [0.0]
ネットワーク内のコネクションの数と新しいアプリケーションの追加は、大量のログデータを引き起こします。
ディープラーニング手法は、特徴抽出と単一システムにおけるデータからの分類の両方を提供する。
本稿では、ネットワークデータの分類と説明技法を組み合わせて、専門家、アルゴリズム、データ間のインターフェースを形成する視覚対話型ツールを提案する。
論文 参考訳(メタデータ) (2022-09-05T16:34:43Z) - A Review of Sparse Expert Models in Deep Learning [23.721204843236006]
スパースエキスパートモデル(Sparse expert model)は、ディープラーニングの一般的なアーキテクチャとして再開発される30年前のコンセプトだ。
本稿では,スパースエキスパートモデルの概念を概観し,共通アルゴリズムの基本的記述を提供し,深層学習時代の進歩を文脈化する。
論文 参考訳(メタデータ) (2022-09-04T18:00:29Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
複素領域における異なる変動演算子の効果について検討する。
モデルの複雑さと性能に影響を及ぼす変化演算子と、それを構成する異なる部分の質を推定する様々な指標に依存するモデルの両方を特徴付ける。
論文 参考訳(メタデータ) (2021-06-16T17:12:26Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
本調査では,2015年以降に開発されたニューラルエンティティリンク(EL)システムの包括的記述について報告する。
その目標は、ニューラルエンティティリンクシステムの設計機能を体系化し、それらのパフォーマンスを一般的なベンチマーク上の注目すべき古典的手法と比較することである。
この調査はエンティティリンクの応用に焦点をあて、最近出現した、深い事前訓練されたマスキング言語モデルを強化するユースケースに焦点を当てている。
論文 参考訳(メタデータ) (2020-05-31T18:02:26Z) - Principal Neighbourhood Aggregation for Graph Nets [4.339839287869653]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ上の様々な予測タスクに有効なモデルであることが示されている。
表現力に関する最近の研究は同型タスクと可算特徴空間に焦点を当てている。
我々はこの理論フレームワークを拡張し、現実世界の入力領域で定期的に発生する連続的な特徴を含める。
論文 参考訳(メタデータ) (2020-04-12T23:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。