論文の概要: Maritime Just-in-time navigation with Quantum algorithms
- arxiv url: http://arxiv.org/abs/2104.07978v1
- Date: Fri, 16 Apr 2021 09:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 11:05:43.415058
- Title: Maritime Just-in-time navigation with Quantum algorithms
- Title(参考訳): 量子アルゴリズムによる海中ジャストインタイムナビゲーション
- Authors: Matthias Imrecke, Fabian Klos, Wolfgang Mergenthaler, Michael Nowak,
Julian Wueschner
- Abstract要約: 海洋産業におけるジャスト・イン・タイムの到来は、温室効果ガスの排出削減とコスト削減の鍵となる概念である。
本稿では,量子コンピュータに実装可能な数学的定式化を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Just-in-time arrival in the maritime industry is a key concept for the
reduction of Greenhouse gas emissions and cost-cutting, with the aim to reach
the industrywide overall climate goals set by the International Maritime
Organization (IMO) for 2030. In this note, we propose a mathematical
formulation which allows for an implementation on quantum computers.
- Abstract(参考訳): 海洋産業におけるジャスト・イン・タイムの到来は、2030年に国際海事機関(IMO)が設定した業界全体の気候目標を達成するため、温室効果ガス排出量の削減とコスト削減の鍵となる概念である。
本稿では,量子コンピュータ上で実装可能な数学的定式化を提案する。
関連論文リスト
- Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
我々は、高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介する。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を処理し、地域の海洋環境に合わせて外部の強制データを統合する。
コペルニクス海洋局が提供した地中海の運用数値モデルを用いて,高空間分解能実験により本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-10-15T17:34:50Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
炭素市場(英: carbon market)は、個人の利益をグローバルユーティリティーと整合させる経済エージェントをインセンティブとする、市場ベースのツールである。
階層型モデルフリーマルチエージェント強化学習(MARL)を用いて市場をシミュレートする適応機構設計フレームワークを提案する。
MARLは、政府エージェントが生産性、平等、二酸化炭素排出のバランスをとることができることを示している。
論文 参考訳(メタデータ) (2024-06-12T05:08:51Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
本稿では,製造シミュレーションのための量子コンピューティングによるサービスエコシステムの枠組みを提案する。
我々は,これらの新しい計算パラダイムを定量的に評価することを目的とした2つの高価値ユースケースを分析した。
論文 参考訳(メタデータ) (2024-01-19T11:04:14Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
本稿ではLANE-SIという適応的な代理モデル手法を提案する。
異なる損失関数を持つ比較的単純な深層学習モデルのアンサンブルを用いて、特定水域における海氷濃度の予測を行う。
我々は,カラ海における最先端物理ベースの予測システムSEAS5に対して,20%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-07T14:48:30Z) - Sea level Projections with Machine Learning using Altimetry and Climate
Model ensembles [0.6882042556551609]
1993年以降に観測された衛星高度計は、地球平均海水準が前例のない速度で上昇していることを示している(3.4mm/年)
機械学習(ML)を用いて海面変動の将来パターンを解明する。
本研究では、衛星観測と気候モデルシミュレーションの両方を利用して海面上昇予測を生成する機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T19:18:38Z) - Quantum Computing Applications for Flight Trajectory Optimization [5.858783038624031]
飛行経路最適化は、重要な生態学的および経済的な考慮のもと、航空宇宙工学領域における重要な操作である。
近年、量子コンピューティング分野は進歩し、古典的アルゴリズムよりも性能が向上している。
本稿では,IBMハードウェア上で量子アルゴリズムを動作させることにより,問題領域内での量子アルゴリズムの組み入れを高速化するための潜在的なアプローチについて述べる。
論文 参考訳(メタデータ) (2023-04-27T18:09:45Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Dimer states of Rydberg atoms on the Kagome lattice as resources for
universal measurement-based quantum computation [0.0]
カゴメ格子上の量子二量体状態は、普遍的な測度に基づく量子計算に十分な資源を提供することを示す。
この状態における論理キュービットの効率的な符号化を提供し、これらのキュービットに普遍的なゲートセットを実装する明示的な測定シーケンスを提供する。
論文 参考訳(メタデータ) (2022-07-10T08:07:19Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。