論文の概要: Sea level Projections with Machine Learning using Altimetry and Climate
Model ensembles
- arxiv url: http://arxiv.org/abs/2308.02460v1
- Date: Wed, 2 Aug 2023 19:18:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 12:02:21.405679
- Title: Sea level Projections with Machine Learning using Altimetry and Climate
Model ensembles
- Title(参考訳): 時間と気候モデルアンサンブルを用いた機械学習による海面投影
- Authors: Saumya Sinha, John Fasullo, R. Steven Nerem, Claire Monteleoni
- Abstract要約: 1993年以降に観測された衛星高度計は、地球平均海水準が前例のない速度で上昇していることを示している(3.4mm/年)
機械学習(ML)を用いて海面変動の将来パターンを解明する。
本研究では、衛星観測と気候モデルシミュレーションの両方を利用して海面上昇予測を生成する機械学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.6882042556551609
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Satellite altimeter observations retrieved since 1993 show that the global
mean sea level is rising at an unprecedented rate (3.4mm/year). With almost
three decades of observations, we can now investigate the contributions of
anthropogenic climate-change signals such as greenhouse gases, aerosols, and
biomass burning in this rising sea level. We use machine learning (ML) to
investigate future patterns of sea level change. To understand the extent of
contributions from the climate-change signals, and to help in forecasting sea
level change in the future, we turn to climate model simulations. This work
presents a machine learning framework that exploits both satellite observations
and climate model simulations to generate sea level rise projections at a
2-degree resolution spatial grid, 30 years into the future. We train fully
connected neural networks (FCNNs) to predict altimeter values through a
non-linear fusion of the climate model hindcasts (for 1993-2019). The learned
FCNNs are then applied to future climate model projections to predict future
sea level patterns. We propose segmenting our spatial dataset into meaningful
clusters and show that clustering helps to improve predictions of our ML model.
- Abstract(参考訳): 1993年以降に観測された衛星高度計の観測によれば、世界平均海面は前例のないほど上昇している(年平均3.4mm)。
約30年間の観測によって、温室効果ガス、エアロゾル、バイオマスの燃焼といった人類性気候変化のシグナルが、この上昇する海面における寄与を調査できる。
機械学習(ml)を用いて海面変化の将来のパターンを調査した。
気候変化信号からの貢献の程度を把握し,将来的な海面変動予測を支援するため,気候モデルシミュレーションに目を向ける。
この研究は、衛星観測と気候モデルシミュレーションの両方を利用して、30年後の2度解像度の空間格子で海面上昇予測を生成する機械学習フレームワークを提示する。
気候モデルヒンドキャスト(1993-2019年)の非線形融合により、完全連結ニューラルネットワーク(fcnn)を訓練し、高度計値を予測する。
学習したFCNNは将来の気候モデル予測に適用され、将来の海面パターンを予測する。
我々は,空間データセットを意味のあるクラスタに分割し,クラスタ化がMLモデルの予測の改善に役立つことを示す。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - Reducing Uncertainty in Sea-level Rise Prediction: A
Spatial-variability-aware Approach [4.32583920500711]
本稿では,空間的変動とモデル間依存性に対処する空間回帰モデルを提案する。
実験結果から,本手法により得られた重みを地域規模でより信頼性の高い予測を行うことができた。
論文 参考訳(メタデータ) (2023-10-19T02:13:38Z) - Multi-decadal Sea Level Prediction using Neural Networks and Spectral
Clustering on Climate Model Large Ensembles and Satellite Altimeter Data [0.0]
本稿では,この長期海水準予測の挑戦的応用における機械学習(ML)の可能性を示す。
我々は,海面トレンドを予測できる完全連結ニューラルネットワーク(FCNN)を用いた教師あり学習フレームワークを開発した。
また、空間データセットを分割し、各セグメント領域に専用のMLモデルを学習する効果を示す。
論文 参考訳(メタデータ) (2023-10-06T19:06:43Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
本稿では,機械学習技術を活用した火星の気候モデリング手法を提案する。
我々の研究は、Gale Craterの相対湿度を正確にモデル化するために設計されたディープニューラルネットワークを提案する。
我々のニューラルネットワークは、いくつかの気象変数を用いて、ガレクレーターの相対湿度を効果的にモデル化できることがわかった。
論文 参考訳(メタデータ) (2023-09-04T08:15:15Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction [24.55780949103687]
海面下温度は気候変動の地球温暖化の影響を受けている。
既存の研究は一般に物理学に基づく数値モデルまたはデータに基づくモデルに基づいている。
本稿では,GAN(Generative Adversarial Network)と数値モデルを組み合わせた,海底温度の予測手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T23:46:51Z) - Predicting Critical Biogeochemistry of the Southern Ocean for Climate
Monitoring [1.8689461238197955]
我々は、南洋のケイ酸塩とリン酸塩の値を、温度、圧力、塩分濃度、酸素、硝酸塩、位置から予測するためにニューラルネットワークを訓練する。
これらのモデルを地球系モデル(ESM)およびBGC-Argoデータに適用し、この海洋観測ネットワークの有用性を拡大する。
論文 参考訳(メタデータ) (2021-10-30T00:13:46Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。