Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB
Image
- URL: http://arxiv.org/abs/2104.07986v1
- Date: Fri, 16 Apr 2021 09:24:08 GMT
- Title: Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB
Image
- Authors: Cheng Yang and Jia Zheng and Xili Dai and Rui Tang and Yi Ma and
Xiaojun Yuan
- Abstract summary: Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image.
This paper considers a more general indoor assumption, i.e., the room layout consists of a single ceiling, a single floor, and several vertical walls.
- Score: 32.5277483805739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-image room layout reconstruction aims to reconstruct the enclosed 3D
structure of a room from a single image. Most previous work relies on the
cuboid-shape prior. This paper considers a more general indoor assumption,
i.e., the room layout consists of a single ceiling, a single floor, and several
vertical walls. To this end, we first employ Convolutional Neural Networks to
detect planes and vertical lines between adjacent walls. Meanwhile, estimating
the 3D parameters for each plane. Then, a simple yet effective geometric
reasoning method is adopted to achieve room layout reconstruction. Furthermore,
we optimize the 3D plane parameters to reconstruct a geometrically consistent
room layout between planes and lines. The experimental results on public
datasets validate the effectiveness and efficiency of our method.
Related papers
- FRI-Net: Floorplan Reconstruction via Room-wise Implicit Representation [18.157827697752317]
We introduce a novel method called FRI-Net for 2D floorplan reconstruction from 3D point cloud.
By incorporating geometric priors of room layouts in floorplans into our training strategy, the generated room polygons are more geometrically regular.
Our method demonstrates improved performance compared to state-of-the-art methods, validating the effectiveness of our proposed representation for floorplan reconstruction.
arXiv Detail & Related papers (2024-07-15T13:01:44Z) - Occupancy Planes for Single-view RGB-D Human Reconstruction [120.5818162569105]
Single-view RGB-D human reconstruction with implicit functions is often formulated as per-point classification.
We propose the occupancy planes (OPlanes) representation, which enables to formulate single-view RGB-D human reconstruction as occupancy prediction on planes which slice through the camera's view frustum.
arXiv Detail & Related papers (2022-08-04T17:59:56Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - 3D Room Layout Estimation from a Cubemap of Panorama Image via Deep
Manhattan Hough Transform [17.51123287432334]
We present an alternative approach to estimate the walls in 3D space by modeling long-range geometric patterns in a learnable Hough Transform block.
We transform the image feature from a cubemap tile to the Hough space of a Manhattan world and directly map the feature to geometric output.
The convolutional layers not only learn the local gradient-like line features, but also utilize the global information to successfully predict occluded walls with a simple network structure.
arXiv Detail & Related papers (2022-07-19T14:22:28Z) - Towards High-Fidelity Single-view Holistic Reconstruction of Indoor
Scenes [50.317223783035075]
We present a new framework to reconstruct holistic 3D indoor scenes from single-view images.
We propose an instance-aligned implicit function (InstPIFu) for detailed object reconstruction.
Our code and model will be made publicly available.
arXiv Detail & Related papers (2022-07-18T14:54:57Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - A Divide et Impera Approach for 3D Shape Reconstruction from Multiple
Views [49.03830902235915]
Estimating the 3D shape of an object from a single or multiple images has gained popularity thanks to the recent breakthroughs powered by deep learning.
This paper proposes to rely on viewpoint variant reconstructions by merging the visible information from the given views.
To validate the proposed method, we perform a comprehensive evaluation on the ShapeNet reference benchmark in terms of relative pose estimation and 3D shape reconstruction.
arXiv Detail & Related papers (2020-11-17T09:59:32Z) - Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction [32.14605731030579]
3D reconstruction from a single RGB image is a challenging problem in computer vision.
Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability.
We present a geometry-based end-to-end deep learning framework that first detects the mirror plane of reflection symmetry that commonly exists in man-made objects and then predicts depth maps by finding the intra-image pixel-wise correspondence of the symmetry.
arXiv Detail & Related papers (2020-06-17T17:58:59Z) - General 3D Room Layout from a Single View by Render-and-Compare [36.94817376590415]
We present a novel method to reconstruct the 3D layout of a room from a single perspective view.
Our dataset consists of 293 images from ScanNet, which we annotated with precise 3D layouts.
arXiv Detail & Related papers (2020-01-07T16:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.