論文の概要: Optimal Pose and Shape Estimation for Category-level 3D Object
Perception
- arxiv url: http://arxiv.org/abs/2104.08383v4
- Date: Sun, 17 Sep 2023 02:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 02:30:58.509699
- Title: Optimal Pose and Shape Estimation for Category-level 3D Object
Perception
- Title(参考訳): カテゴリーレベル3次元物体知覚のための最適ポーズと形状推定
- Authors: Jingnan Shi, Heng Yang, Luca Carlone
- Abstract要約: カテゴリーレベルの知覚問題で、与えられたカテゴリのオブジェクトを撮影する3Dセンサーデータが与えられる。
ポーズと形状推定のための第1の最適CADソルバを提供する。
また, カテゴリレベルの知覚において, アウトレーヤを起点とするグラフ理論の定式化も行った。
- 参考スコア(独自算出の注目度): 24.232254155643574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a category-level perception problem, where one is given 3D sensor
data picturing an object of a given category (e.g. a car), and has to
reconstruct the pose and shape of the object despite intra-class variability
(i.e. different car models have different shapes). We consider an active shape
model, where -- for an object category -- we are given a library of potential
CAD models describing objects in that category, and we adopt a standard
formulation where pose and shape estimation are formulated as a non-convex
optimization. Our first contribution is to provide the first certifiably
optimal solver for pose and shape estimation. In particular, we show that
rotation estimation can be decoupled from the estimation of the object
translation and shape, and we demonstrate that (i) the optimal object rotation
can be computed via a tight (small-size) semidefinite relaxation, and (ii) the
translation and shape parameters can be computed in closed-form given the
rotation. Our second contribution is to add an outlier rejection layer to our
solver, hence making it robust to a large number of misdetections. Towards this
goal, we wrap our optimal solver in a robust estimation scheme based on
graduated non-convexity. To further enhance robustness to outliers, we also
develop the first graph-theoretic formulation to prune outliers in
category-level perception, which removes outliers via convex hull and maximum
clique computations; the resulting approach is robust to 70%-90% outliers. Our
third contribution is an extensive experimental evaluation. Besides providing
an ablation study on a simulated dataset and on the PASCAL3D+ dataset, we
combine our solver with a deep-learned keypoint detector, and show that the
resulting approach improves over the state of the art in vehicle pose
estimation in the ApolloScape datasets.
- Abstract(参考訳): カテゴリーレベルの知覚問題を考えると、与えられたカテゴリーのオブジェクト(例えば車)を3dセンサーデータで認識し、クラス内変動にかかわらずオブジェクトのポーズと形状を再構築する必要がある(例えば、異なるカーモデルが異なる形状を持つ)。
対象のカテゴリに対して、そのカテゴリのオブジェクトを記述する潜在的なcadモデルのライブラリが与えられ、ポーズと形状推定を非凸最適化として定式化する標準的な定式化を採用するアクティブな形状モデルを考える。
第1の貢献は,ポーズと形状推定に最適な最初の解法を提供することである。
特に,回転推定は物体の翻訳と形状の推定から切り離せることを示すとともに,その効果を実証する。
(i)狭い(小さい)半定値緩和により最適な物体回転を計算でき、
(ii) 回転を考慮すれば, 変換パラメータと形状パラメータを閉形式で計算できる。
2つめのコントリビューションは、解法に外れた拒絶層を追加することで、多数の誤検出に対して堅牢にします。
この目的に向けて, 次数非凸性に基づくロバストな推定スキームで最適解法をラップする。
さらに,外乱に対する強靭性を高めるために,外乱の包絡と最大傾角計算による外乱の除去を行うカテゴリレベルの知覚において,最初のグラフ理論定式化を開発し,70%-90%の外乱に対して頑健である。
第3の貢献は、広範な実験的評価です。
シミュレーションデータセットとPASCAL3D+データセットのアブレーションスタディを提供するとともに、解法とディープラーニングキーポイント検出器を組み合わせることで、ApolloScapeデータセットにおける車両の姿勢推定における技術状況よりも、結果として得られるアプローチが改善されることを示す。
関連論文リスト
- PMPNet: Pixel Movement Prediction Network for Monocular Depth Estimation in Dynamic Scenes [7.736445799116692]
動的シーンにおける単眼深度推定のための新しい手法を提案する。
まず,動的シーンにおける物体の運動軌跡の任意性について理論的に検討する。
エッジ周辺の深度不整合を克服するために,変形可能なサポートウィンドウモジュールを提案する。
論文 参考訳(メタデータ) (2024-11-04T03:42:29Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
現在のアプローチは、多数の離散的なポーズ仮説を持つ連続的なポーズ表現を近似している。
本稿では,DVMNet(Deep Voxel Matching Network)を提案する。
提案手法は,最先端の手法に比べて計算コストの低い新しいオブジェクトに対して,より正確なポーズ推定を行う。
論文 参考訳(メタデータ) (2024-03-20T15:41:32Z) - Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
未知のオブジェクトに対して高品質なオブジェクトレベルマップを再構築するフレームワークを提案する。
提案手法では,複数のRGB-D画像を入力として,高密度な3次元形状と検出対象に対する9-DoFポーズを出力する。
2つの新たな損失関数を通して形状を伝播し不確実性を生じさせる確率的定式化を導出する。
論文 参考訳(メタデータ) (2023-09-17T00:48:19Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - RBP-Pose: Residual Bounding Box Projection for Category-Level Pose
Estimation [103.74918834553247]
カテゴリーレベルのオブジェクトポーズ推定は、既知のカテゴリの集合からの任意のオブジェクトの3次元メートル法サイズだけでなく、6次元のポーズを予測することを目的としている。
近年の手法では, 観測された点雲を標準空間にマッピングし, 梅山アルゴリズムを用いてポーズとサイズを復元する手法が提案されている。
本稿では,オブジェクトのポーズと残差ベクトルを共同で予測する,幾何学誘導型残差オブジェクト境界ボックス投影ネットワーク RBP-Pose を提案する。
論文 参考訳(メタデータ) (2022-07-30T14:45:20Z) - Optimal and Robust Category-level Perception: Object Pose and Shape
Estimation from 2D and 3D Semantic Keypoints [24.232254155643574]
与えられたカテゴリ(例えば車)のオブジェクトを撮影する2Dまたは3Dセンサデータを取得し、オブジェクトの3Dポーズと形状を再構築する必要がある問題を考える。
最初の貢献は PACE3D* と PACE2D* を開発することである。
2つ目のコントリビューションは、PACE3D#とPACE2D#という名前の、両方のソルバの開発バージョンです。
論文 参考訳(メタデータ) (2022-06-24T21:58:00Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
仮想深度で画像を合成することでトレーニングデータを増強するレンダリングモジュールを提案する。
レンダリングモジュールは、RGB画像と対応するスパース深度画像とを入力として、さまざまなフォトリアリスティック合成画像を出力する。
さらに,深度推定タスクを通じて共同で最適化することで,検出モデルを改善する補助モジュールを導入する。
論文 参考訳(メタデータ) (2021-07-28T11:00:47Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
6次元ポーズ推定のための効率的なカテゴリレベルの特徴抽出が可能な高速形状ベースネットワーク(FS-Net)を提案する。
提案手法は,カテゴリレベルおよびインスタンスレベルの6Dオブジェクトのポーズ推定における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-03-12T03:07:24Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
RGB-D画像から見えないオブジェクトの6Dポーズとサイズを復元する新しい学習手法を提案する。
本研究では,事前学習したカテゴリ形状からの変形を明示的にモデル化することにより,3次元オブジェクトモデルを再構築するディープネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-16T16:45:05Z) - CAE-LO: LiDAR Odometry Leveraging Fully Unsupervised Convolutional
Auto-Encoder for Interest Point Detection and Feature Description [10.73965992177754]
2D CAEを用いた球面リングデータから利得点を検出し、3D CAEを用いたマルチレゾリューションボクセルモデルから特徴点を抽出する、完全に教師なしコナールオートエンコーダベースのLiDARオドメトリー(CAE-LO)を提案する。
1)KITTIデータセットに基づく実験により、未構造化シナリオにおける一致の成功率を改善するために、より局所的な詳細を抽出できることが示され、我々の特徴は、マッチング不整合比で50%以上、最先端の成果を上げている。
論文 参考訳(メタデータ) (2020-01-06T01:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。