Data Distillation for Text Classification
- URL: http://arxiv.org/abs/2104.08448v1
- Date: Sat, 17 Apr 2021 04:54:54 GMT
- Title: Data Distillation for Text Classification
- Authors: Yongqi Li, Wenjie Li
- Abstract summary: Data distillation aims to distill the knowledge from a large training dataset down to a smaller and synthetic one.
We develop a novel data distillation method for text classification.
The results that the distilled data with the size of 0.1% of the original text data achieves approximately 90% performance of the original is rather impressive.
- Score: 7.473576666437028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques have achieved great success in many fields, while at
the same time deep learning models are getting more complex and expensive to
compute. It severely hinders the wide applications of these models. In order to
alleviate this problem, model distillation emerges as an effective means to
compress a large model into a smaller one without a significant drop in
accuracy. In this paper, we study a related but orthogonal issue, data
distillation, which aims to distill the knowledge from a large training dataset
down to a smaller and synthetic one. It has the potential to address the large
and growing neural network training problem based on the small dataset. We
develop a novel data distillation method for text classification. We evaluate
our method on eight benchmark datasets. The results that the distilled data
with the size of 0.1% of the original text data achieves approximately 90%
performance of the original is rather impressive.
Related papers
- Teddy: Efficient Large-Scale Dataset Distillation via Taylor-Approximated Matching [74.75248610868685]
Teddy is a Taylor-approximated dataset distillation framework designed to handle large-scale dataset.
Teddy attains state-of-the-art efficiency and performance on the Tiny-ImageNet and original-sized ImageNet-1K dataset.
arXiv Detail & Related papers (2024-10-10T03:28:46Z) - Tiny models from tiny data: Textual and null-text inversion for few-shot distillation [11.80626524879555]
Few-shot image classification involves classifying images using very few training examples.
Recent vision foundation models show excellent few-shot transfer abilities, but are large and slow at inference.
We present a novel diffusion model inversion technique (TINT) combining the diversity of textual inversion with the specificity of null-text inversion.
arXiv Detail & Related papers (2024-06-05T11:01:42Z) - Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification [0.0]
Main goal is to push further the performance of prototype-based soft-labels distillation in terms of classification accuracy.
Experimental studies trace the capability of the method to distill the data, but also the opportunity to act as an augmentation method.
arXiv Detail & Related papers (2024-03-25T19:15:19Z) - Dataset Distillation via Adversarial Prediction Matching [24.487950991247764]
We propose an adversarial framework to solve the dataset distillation problem efficiently.
Our method can produce synthetic datasets just 10% the size of the original, yet achieve, on average, 94% of the test accuracy of models trained on the full original datasets.
arXiv Detail & Related papers (2023-12-14T13:19:33Z) - Towards Lossless Dataset Distillation via Difficulty-Aligned Trajectory Matching [19.8751746334929]
We present an algorithm that remains effective as the size of the synthetic dataset grows.
We experimentally find that the training stage of the trajectories we choose to match greatly affects the effectiveness of the distilled dataset.
In doing so, we successfully scale trajectory matching-based methods to larger synthetic datasets.
arXiv Detail & Related papers (2023-10-09T14:57:41Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation [96.92250565207017]
We study the data efficiency and selection for the dataset distillation task.
By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset.
We find the most contributing samples based on their causal effects on the distillation.
arXiv Detail & Related papers (2023-05-28T06:53:41Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation [77.34726150561087]
This article explores various data distillation techniques that can reduce the amount of data required to successfully train deep networks.
Inspired by recent ideas, we suggest new data distillation techniques based on generative teaching networks, gradient matching, and the Implicit Function Theorem.
arXiv Detail & Related papers (2022-03-16T11:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.