論文の概要: Moving on from OntoNotes: Coreference Resolution Model Transfer
- arxiv url: http://arxiv.org/abs/2104.08457v1
- Date: Sat, 17 Apr 2021 05:35:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 14:15:20.906952
- Title: Moving on from OntoNotes: Coreference Resolution Model Transfer
- Title(参考訳): OntoNotesからの移行:Coreference Resolution Model Transfer
- Authors: Patrick Xia, Benjamin Van Durme
- Abstract要約: 対象データセットで利用可能な注釈付き文書の数に基づいて,コリファレンス解決モデルの転送可能性を定量化する。
LitBankとPreCoの最新の結果を含む、いくつかのデータセットにまたがる新しいベンチマークを確立します。
- 参考スコア(独自算出の注目度): 47.5441257300917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Academic neural models for coreference resolution are typically trained on a
single dataset (OntoNotes) and model improvements are then benchmarked on that
dataset. However, real-world usages of coreference resolution models depend on
the annotation guidelines and the domain of the target dataset, which often
differ from those of OntoNotes. We aim to quantify transferability of
coreference resolution models based on the number of annotated documents
available in the target dataset. We examine five target datasets and find that
continued training is consistently effective and especially beneficial when
there are few target documents. We establish new benchmarks across several
datasets, including state-of-the-art results on LitBank and PreCo.
- Abstract(参考訳): コリファレンス解決のための学術ニューラルモデルは通常、単一のデータセット(オンノート)でトレーニングされ、モデルの改善はそのデータセット上でベンチマークされる。
しかし、コア参照解決モデルの実際の使用はアノテーションガイドラインとターゲットデータセットのドメインに依存しており、OntoNotesとはしばしば異なる。
対象とするデータセットで利用可能な注釈付き文書の数に基づいて,コリファレンス解決モデルの転送可能性の定量化を目標とする。
対象とする5つのデータセットを調査し,目標文書が少ない場合には,継続トレーニングが一貫して有効であり,特に有益であることを確認した。
LitBankとPreCoの最先端の結果を含む、いくつかのデータセットにまたがる新たなベンチマークを確立します。
関連論文リスト
- On Evaluation of Vision Datasets and Models using Human Competency Frameworks [20.802372291783488]
アイテム応答理論(IRT)は、モデルと各データセット項目のアンサンブルに対して解釈可能な潜在パラメータを推論するフレームワークである。
モデルキャリブレーションを評価し、情報的データサブセットを選択し、コンピュータビジョンにおけるモデルとデータセットを解析・比較するための潜在パラメータの有用性を実証する。
論文 参考訳(メタデータ) (2024-09-06T06:20:11Z) - RanLayNet: A Dataset for Document Layout Detection used for Domain Adaptation and Generalization [36.973388673687815]
RanLayNetは、自動的に割り当てられたラベルでリッチ化された合成ドキュメントデータセットである。
本研究では,データセットでトレーニングしたディープレイアウト識別モデルに対して,実際の文書のみをトレーニングしたモデルと比較して,性能が向上したことを示す。
論文 参考訳(メタデータ) (2024-04-15T07:50:15Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
公開されている事前訓練されたモデルの目標タスクへの転送可能性の推定は、伝達学習タスクにとって重要な場所となっている。
本稿では, モデルアンサンブルの下流タスクへの転送可能性を評価するために, 最適なtranSportベースのsuBmOdular tRaNsferability Metrics(OSBORN)を提案する。
論文 参考訳(メタデータ) (2023-09-05T17:57:31Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - On Generalization in Coreference Resolution [66.05112218880907]
モデルの市販性能を評価するため、異なるドメインを対象とした8つのコア参照解決データセットを統合する。
次に、それらのドメイン、アノテーションガイドライン、メタデータが異なるにもかかわらず、トレーニングのために3つのデータセットを混ぜて、単一のモデルを共同でトレーニングする方法を提案する。
ゼロショット環境では、単一のデータセット転送でトレーニングされたモデルが不十分であるのに対して、共同トレーニングの成果によって全体的なパフォーマンスが改善されていることが分かりました。
論文 参考訳(メタデータ) (2021-09-20T16:33:22Z) - Adaptive Active Learning for Coreference Resolution [37.261220564076964]
最近のインクリメンタルコア推論解決の進展により、この設定におけるアクティブラーニングに対する新しいアプローチが可能になる。
コアファレンスのためのデータバリアを下げることで、コアファレンスリゾルバは、以前に考慮されていない一連のドメインに迅速に適応できます。
論文 参考訳(メタデータ) (2021-04-15T17:21:51Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
大規模テキストコーパス上での自己教師対象による事前学習モデルは、英語テキスト要約タスクにおける最先端のパフォーマンスを達成する。
モデルは通常、数十万のデータポイントで微調整されるが、これは新しいニッチなドメインに要約を適用する際に、実現不可能な要件である。
我々は、教師なし、データセット固有の方法で要約のための訓練済みモデルを微調整するための、WikiTransferと呼ばれる新しい一般化可能な手法を紹介した。
論文 参考訳(メタデータ) (2020-10-24T08:36:49Z) - Reliable Evaluations for Natural Language Inference based on a Unified
Cross-dataset Benchmark [54.782397511033345]
クラウドソースの自然言語推論(NLI)データセットは、アノテーションアーティファクトのような重大なバイアスに悩まされる可能性がある。
14のNLIデータセットと9つの広く使用されているニューラルネットワークベースのNLIモデルを再評価した、新しいクロスデータセットベンチマークを提案する。
提案した評価手法と実験ベースラインは,将来信頼性の高いNLI研究を刺激する基盤となる可能性がある。
論文 参考訳(メタデータ) (2020-10-15T11:50:12Z) - $n$-Reference Transfer Learning for Saliency Prediction [73.17061116358036]
本稿では,サリエンシ予測のための数発のトランスファー学習パラダイムを提案する。
提案するフレームワークは勾配ベースでモデルに依存しない。
その結果,提案フレームワークは大幅な性能向上を実現していることがわかった。
論文 参考訳(メタデータ) (2020-07-09T23:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。