論文の概要: Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language
Models
- arxiv url: http://arxiv.org/abs/2104.08666v1
- Date: Sun, 18 Apr 2021 00:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-23 04:49:32.003109
- Title: Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language
Models
- Title(参考訳): 両世界の最悪:事前訓練された視覚言語モデルにおけるバイアスの複合化
- Authors: Tejas Srinivasan, Yonatan Bisk
- Abstract要約: この研究は、テキストベースのバイアス分析手法を拡張し、マルチモーダル言語モデルを調べる。
VL-BERTが性別バイアスを示し、視覚シーンを忠実に表現するよりもステレオタイプを強化することを好むことが多いことを実証します。
- 参考スコア(独自算出の注目度): 17.90351661475405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous works have analyzed biases in vision and pre-trained language models
individually - however, less attention has been paid to how these biases
interact in multimodal settings. This work extends text-based bias analysis
methods to investigate multimodal language models, and analyzes intra- and
inter-modality associations and biases learned by these models. Specifically,
we demonstrate that VL-BERT (Su et al., 2020) exhibits gender biases, often
preferring to reinforce a stereotype over faithfully describing the visual
scene. We demonstrate these findings on a controlled case-study and extend them
for a larger set of stereotypically gendered entities.
- Abstract(参考訳): 多くの研究が視覚と事前訓練された言語モデルのバイアスを個別に分析しているが、これらのバイアスがマルチモーダル環境でどのように相互作用するかにはあまり注意が払われていない。
本研究は,マルチモーダル言語モデルを調査するためにテキストに基づくバイアス分析手法を拡張し,これらのモデルによって学習されるモダリティ内およびモダリティ間関係とバイアスを分析する。
具体的には, vl-bert (su et al., 2020) が性バイアスを示し, 視覚場面を忠実に表現するよりもステレオタイプを強調することが好まれる。
これらの知見を制御されたケーススタディで示し、より大きなステレオタイプのジェンダーを持つエンティティに対して拡張する。
関連論文リスト
- Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、下流タスクにおけるデバイアスとパフォーマンスの最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
本研究では,音声大言語モデル(SLLM)における社会的バイアスの評価を目的としたデータセットであるSpken Stereosetを紹介する。
多様な人口集団の発話に対して異なるモデルがどのように反応するかを調べることで、これらのバイアスを特定することを目指している。
これらの結果から,ほとんどのモデルではバイアスが最小であるが,ステレオタイプや反ステレオタイプ傾向がわずかにみられた。
論文 参考訳(メタデータ) (2024-08-14T16:55:06Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
大規模言語モデル(LLM)は、人間の好みを含む事実や人間の認知を学ぶために、広範囲なコーパスで事前訓練されている。
このプロセスは、社会においてバイアスや一般的なステレオタイプを取得するこれらのモデルに必然的に導かれる可能性がある。
本稿では,職業代名詞の性別バイアスを軽減する知識編集手法LSDMを提案する。
論文 参考訳(メタデータ) (2024-03-21T13:57:43Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - MultiModal Bias: Introducing a Framework for Stereotypical Bias
Assessment beyond Gender and Race in Vision Language Models [40.12132844347926]
MMBiasと呼ばれる視覚的およびテキスト的バイアスベンチマークを提供し、約3,800の画像と14のサブグループをカバーするフレーズからなる。
このデータセットを用いて、CLIP、ALBEF、VLTを含むいくつかの著名な自己監督型マルチモーダルモデルにおけるバイアスを評価する。
バイアスを緩和するための後処理ステップとして適用可能な,大規模な事前学習モデルに特化して設計されたデバイアス処理手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:36:37Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - The Birth of Bias: A case study on the evolution of gender bias in an
English language model [1.6344851071810076]
私たちは、英語のウィキペディアコーパスでトレーニングされたLSTMアーキテクチャを使って、比較的小さな言語モデルを使用します。
性別の表現は動的であり、訓練中に異なる位相を識別する。
モデルの入力埋め込みにおいて,ジェンダー情報が局所的に表現されることが示される。
論文 参考訳(メタデータ) (2022-07-21T00:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。