TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing
Accounts
- URL: http://arxiv.org/abs/2104.08767v2
- Date: Tue, 20 Apr 2021 13:48:30 GMT
- Title: TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing
Accounts
- Authors: Jinhuan Wang and Pengtao Chen and Shanqing Yu and Qi Xuan
- Abstract summary: Transaction SubGraph Network (TSGN) based classification model to identify phishing accounts.
We find that TSGNs can provide more potential information to benefit the identification of phishing accounts.
- Score: 2.3112192919085826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain technology and, in particular, blockchain-based transaction offers
us information that has never been seen before in the financial world. In
contrast to fiat currencies, transactions through virtual currencies like
Bitcoin are completely public. And these transactions of cryptocurrencies are
permanently recorded on Blockchain and are available at any time. Therefore,
this allows us to build transaction networks (TN) to analyze illegal
phenomenons such as phishing scams in blockchain from a network perspective. In
this paper, we propose a Transaction SubGraph Network (TSGN) based
classification model to identify phishing accounts in Ethereum. Firstly we
extract transaction subgraphs for each address and then expand these subgraphs
into corresponding TSGNs based on the different mapping mechanisms. We find
that TSGNs can provide more potential information to benefit the identification
of phishing accounts. Moreover, Directed-TSGNs, by introducing direction
attributes, can retain the transaction flow information that captures the
significant topological pattern of phishing scams. By comparing with the TSGN,
Directed-TSGN indeed has much lower time complexity, benefiting the graph
representation learning. Experimental results demonstrate that, combined with
network representation algorithms, the TSGN model can capture more features to
enhance the classification algorithm and improve phishing nodes' identification
accuracy in the Ethereum networks.
Related papers
- Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Motif-aware temporal GCN for fraud detection in signed cryptocurrency
trust networks [8.82136716762572]
Graph convolutional networks (GCNs) are used for processing data that can be represented as graphs.
In this study, we consider the evolving nature of cryptocurrency networks, and use local structural as well as the balance theory to guide the training process.
Experimental results on bitcoin-alpha and bitcoin-otc datasets show that the proposed model outperforms those in the literature.
arXiv Detail & Related papers (2022-11-22T02:03:27Z) - Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal
Link Prediction in Cryptocurrency Transaction Networks [1.6801544027052142]
Link prediction learning structure of network is helpful to understand the mechanism of network.
We propose a single latent factor-dependent, non-negative, multiplicative and graph regularized-incorporated update (SLF-NMGRU) algorithm.
Experiments on a real cryptocurrency transaction network show that the proposed method improves both the accuracy and the computational efficiency.
arXiv Detail & Related papers (2022-08-03T08:58:59Z) - FlowX: Towards Explainable Graph Neural Networks via Message Flows [59.025023020402365]
We investigate the explainability of graph neural networks (GNNs) as a step toward elucidating their working mechanisms.
We propose a novel method here, known as FlowX, to explain GNNs by identifying important message flows.
We then propose an information-controlled learning algorithm to train flow scores toward diverse explanation targets.
arXiv Detail & Related papers (2022-06-26T22:48:15Z) - TTAGN: Temporal Transaction Aggregation Graph Network for Ethereum
Phishing Scams Detection [11.20384152151594]
Existing phishing scams detection technology mostly uses machine learning or network representation learning to mine the key information from the transaction network to identify phishing addresses.
We propose a Temporal Transaction Aggregation Graph Network (TTAGN) to enhance phishing detection performance.
Our TTAGN (92.8% AUC, and 81.6% F1score) outperforms the state-of-the-art methods, and the effectiveness of temporal edges representation and edge2node module is also demonstrated.
arXiv Detail & Related papers (2022-04-28T12:17:00Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
Graph Convolutional Networks (GCNs) have been drawing significant attention with the power of representation learning on graphs.
Unlike Convolutional Neural Networks (CNNs), which are able to take advantage of stacking very deep layers, GCNs suffer from vanishing gradient, over-smoothing and over-fitting issues when going deeper.
This paper proposes DeeperGCN that is capable of successfully and reliably training very deep GCNs.
arXiv Detail & Related papers (2020-06-13T23:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.