Motif-aware temporal GCN for fraud detection in signed cryptocurrency
trust networks
- URL: http://arxiv.org/abs/2211.13123v2
- Date: Wed, 29 Mar 2023 04:01:17 GMT
- Title: Motif-aware temporal GCN for fraud detection in signed cryptocurrency
trust networks
- Authors: Song Li, Jiandong Zhou, Chong MO, Jin LI, Geoffrey K. F. Tso, Yuxing
Tian
- Abstract summary: Graph convolutional networks (GCNs) are used for processing data that can be represented as graphs.
In this study, we consider the evolving nature of cryptocurrency networks, and use local structural as well as the balance theory to guide the training process.
Experimental results on bitcoin-alpha and bitcoin-otc datasets show that the proposed model outperforms those in the literature.
- Score: 8.82136716762572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) is a class of artificial neural networks
for processing data that can be represented as graphs. Since financial
transactions can naturally be constructed as graphs, GCNs are widely applied in
the financial industry, especially for financial fraud detection. In this
paper, we focus on fraud detection on cryptocurrency truct networks. In the
literature, most works focus on static networks. Whereas in this study, we
consider the evolving nature of cryptocurrency networks, and use local
structural as well as the balance theory to guide the training process. More
specifically, we compute motif matrices to capture the local topological
information, then use them in the GCN aggregation process. The generated
embedding at each snapshot is a weighted average of embeddings within a time
window, where the weights are learnable parameters. Since the trust networks is
signed on each edge, balance theory is used to guide the training process.
Experimental results on bitcoin-alpha and bitcoin-otc datasets show that the
proposed model outperforms those in the literature.
Related papers
- Review of blockchain application with Graph Neural Networks, Graph Convolutional Networks and Convolutional Neural Networks [0.0]
This paper reviews the applications of Graph Neural Networks (GNNs), Graph Convolutional Networks (GCNs), and Convolutional Neural Networks (CNNs) in blockchain technology.
arXiv Detail & Related papers (2024-10-01T17:11:22Z) - The Shape of Money Laundering: Subgraph Representation Learning on the Blockchain with the Elliptic2 Dataset [6.209290101460395]
Subgraph representation learning is a technique for analyzing local structures (or shapes) within complex networks.
We introduce Elliptic2, a large graph dataset containing 122K labeled subgraphs of Bitcoin clusters.
We find immediate practical value in this approach and the potential for a new standard in anti-money laundering and forensic analytics in cryptocurrencies.
arXiv Detail & Related papers (2024-04-29T21:19:41Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal
Link Prediction in Cryptocurrency Transaction Networks [1.6801544027052142]
Link prediction learning structure of network is helpful to understand the mechanism of network.
We propose a single latent factor-dependent, non-negative, multiplicative and graph regularized-incorporated update (SLF-NMGRU) algorithm.
Experiments on a real cryptocurrency transaction network show that the proposed method improves both the accuracy and the computational efficiency.
arXiv Detail & Related papers (2022-08-03T08:58:59Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
The paper analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques.
It shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution.
arXiv Detail & Related papers (2022-06-07T16:22:55Z) - Wide and Deep Graph Neural Network with Distributed Online Learning [174.8221510182559]
Graph neural networks (GNNs) are naturally distributed architectures for learning representations from network data.
Online learning can be leveraged to retrain GNNs at testing time to overcome this issue.
This paper develops the Wide and Deep GNN (WD-GNN), a novel architecture that can be updated with distributed online learning mechanisms.
arXiv Detail & Related papers (2021-07-19T23:56:48Z) - TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing
Accounts [2.3112192919085826]
Transaction SubGraph Network (TSGN) based classification model to identify phishing accounts.
We find that TSGNs can provide more potential information to benefit the identification of phishing accounts.
arXiv Detail & Related papers (2021-04-18T08:12:51Z) - Wide and Deep Graph Neural Networks with Distributed Online Learning [175.96910854433574]
Graph neural networks (GNNs) learn representations from network data with naturally distributed architectures.
Online learning can be used to retrain GNNs at testing time, overcoming this issue.
This paper proposes the Wide and Deep GNN (WD-GNN), a novel architecture that can be easily updated with distributed online learning mechanisms.
arXiv Detail & Related papers (2020-06-11T12:48:03Z) - CSNE: Conditional Signed Network Embedding [77.54225346953069]
Signed networks encode positive and negative relations between entities such as friend/foe or trust/distrust.
Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function.
We introduce conditional signed network embedding (CSNE)
Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail.
arXiv Detail & Related papers (2020-05-19T19:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.