Ranking Structured Objects with Graph Neural Networks
- URL: http://arxiv.org/abs/2104.08869v1
- Date: Sun, 18 Apr 2021 14:40:59 GMT
- Title: Ranking Structured Objects with Graph Neural Networks
- Authors: Clemens Damke and Eyke H\"ullermeier
- Abstract summary: RankGNNs are trained with a set of pair-wise preferences between graphs, suggesting that one of them is preferred over the other.
One practical application of this problem is drug screening, where an expert wants to find the most promising molecules in a large collection of drug candidates.
We empirically demonstrate that our proposed pair-wise RankGNN approach either significantly outperforms or at least matches the ranking performance of the naive point-wise baseline approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have been successfully applied in many
structured data domains, with applications ranging from molecular property
prediction to the analysis of social networks. Motivated by the broad
applicability of GNNs, we propose the family of so-called RankGNNs, a
combination of neural Learning to Rank (LtR) methods and GNNs. RankGNNs are
trained with a set of pair-wise preferences between graphs, suggesting that one
of them is preferred over the other. One practical application of this problem
is drug screening, where an expert wants to find the most promising molecules
in a large collection of drug candidates. We empirically demonstrate that our
proposed pair-wise RankGNN approach either significantly outperforms or at
least matches the ranking performance of the naive point-wise baseline
approach, in which the LtR problem is solved via GNN-based graph regression.
Related papers
- Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Task-Agnostic Graph Neural Network Evaluation via Adversarial
Collaboration [11.709808788756966]
GraphAC is a principled, task-agnostic, and stable framework for evaluating Graph Neural Network (GNN) research for molecular representation learning.
We introduce a novel objective function: the Competitive Barlow Twins, that allow two GNNs to jointly update themselves from direct competitions against each other.
arXiv Detail & Related papers (2023-01-27T03:33:11Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Distributed Graph Neural Network Training: A Survey [51.77035975191926]
Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains.
Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs.
As a remedy, distributed computing becomes a promising solution of training large-scale GNNs.
arXiv Detail & Related papers (2022-11-01T01:57:00Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Optimization of Graph Neural Networks: Implicit Acceleration by Skip
Connections and More Depth [57.10183643449905]
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization.
We study the dynamics of GNNs by studying deep skip optimization.
Our results provide first theoretical support for the success of GNNs.
arXiv Detail & Related papers (2021-05-10T17:59:01Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data.
We propose to enhance information propagation among GNN layers by combining heterogeneous aggregations.
We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks.
arXiv Detail & Related papers (2021-02-08T08:57:56Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
We prove that several important graph properties cannot be computed by graph neural networks (GNNs) that rely entirely on local information.
We provide the first data dependent generalization bounds for message passing GNNs.
Our bounds are much tighter than existing VC-dimension based guarantees for GNNs, and are comparable to Rademacher bounds for recurrent neural networks.
arXiv Detail & Related papers (2020-02-14T18:10:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.