Optimization of Graph Neural Networks: Implicit Acceleration by Skip
Connections and More Depth
- URL: http://arxiv.org/abs/2105.04550v1
- Date: Mon, 10 May 2021 17:59:01 GMT
- Title: Optimization of Graph Neural Networks: Implicit Acceleration by Skip
Connections and More Depth
- Authors: Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, Kenji Kawaguchi
- Abstract summary: Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization.
We study the dynamics of GNNs by studying deep skip optimization.
Our results provide first theoretical support for the success of GNNs.
- Score: 57.10183643449905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been studied from the lens of expressive
power and generalization. However, their optimization properties are less well
understood. We take the first step towards analyzing GNN training by studying
the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that
despite the non-convexity of training, convergence to a global minimum at a
linear rate is guaranteed under mild assumptions that we validate on real-world
graphs. Second, we study what may affect the GNNs' training speed. Our results
show that the training of GNNs is implicitly accelerated by skip connections,
more depth, and/or a good label distribution. Empirical results confirm that
our theoretical results for linearized GNNs align with the training behavior of
nonlinear GNNs. Our results provide the first theoretical support for the
success of GNNs with skip connections in terms of optimization, and suggest
that deep GNNs with skip connections would be promising in practice.
Related papers
- Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Graph-less Neural Networks: Teaching Old MLPs New Tricks via
Distillation [34.676755383361005]
Graph-less Neural Networks (GLNNs) have no inference graph dependency.
We show that GLNNs with competitive performance infer faster than GNNs by 146X-273X and faster than other acceleration methods by 14X-27X.
A comprehensive analysis of GLNN shows when and why GLNN can achieve competitive results to Gs and suggests GLNN as a handy choice for latency-constrained applications.
arXiv Detail & Related papers (2021-10-17T05:16:58Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
It is known that the current graph neural networks (GNNs) are difficult to make themselves deep due to the problem known as over-smoothing.
Multi-scale GNNs are a promising approach for mitigating the over-smoothing problem.
We derive the optimization and generalization guarantees of transductive learning algorithms that include multi-scale GNNs.
arXiv Detail & Related papers (2020-06-15T17:06:17Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.