論文の概要: Texture Based Classification of High Resolution Remotely Sensed Imagery
using Weber Local Descriptor
- arxiv url: http://arxiv.org/abs/2104.08899v1
- Date: Sun, 18 Apr 2021 16:37:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 08:37:48.593405
- Title: Texture Based Classification of High Resolution Remotely Sensed Imagery
using Weber Local Descriptor
- Title(参考訳): Weber Local Descriptor を用いた高分解能リモートセンシング画像のテクスチャベース分類
- Authors: Decky Aspandi-Latif, Sally Goldin, Preesan Rakwatin, Kurt Rudahl
- Abstract要約: 本稿では,Weber Local Descriptor (WLD) と呼ばれる最近開発された,高解像度のQuickBird パンクロマトグラフィーデータを分類する手法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional image classification techniques often produce unsatisfactory
results when applied to high spatial resolution data because classes in high
resolution images are not spectrally homogeneous. Texture offers an alternative
source of information for classifying these images. This paper evaluates a
recently developed, computationally simple texture metric called Weber Local
Descriptor (WLD) for use in classifying high resolution QuickBird panchromatic
data. We compared WLD with state-of-the art texture descriptors (TD) including
Local Binary Pattern (LBP) and its rotation-invariant version LBPRIU. We also
investigated whether incorporating VAR, a TD that captures brightness
variation, would improve the accuracy of LBPRIU and WLD. We found that WLD
generally produces more accurate classification results than the other TD we
examined, and is also more robust to varying parameters. We have implemented an
optimised algorithm for calculating WLD which makes the technique practical in
terms of computation time. Overall, our results indicate that WLD is a
promising approach for classifying high resolution remote sensing data.
- Abstract(参考訳): 従来の画像分類技術は、高解像度画像のクラスがスペクトル均質ではないため、高解像度データに適用すると不満足な結果をもたらすことが多い。
textureはこれらの画像を分類するための代替情報を提供する。
本稿では,Weber Local Descriptor (WLD) と呼ばれる最近開発された,高解像度のQuickBird パンクロマトグラフィーデータを分類する手法について述べる。
我々はWLDと,LBP (Local Binary Pattern) を含む最先端テクスチャ記述子 (TD) と,その回転不変バージョン LBPRIU を比較した。
また,明るさ変化を捉えたTDであるVARを組み込むことで,LPPRIUとWLDの精度が向上するかどうかについても検討した。
We found that WLD produce more accurate classification results than the other TD, and also robust to various parameters。
我々は,WLD計算のための最適化アルゴリズムを実装した。
以上の結果から,WLDは高解像度リモートセンシングデータの分類において有望なアプローチであることが示された。
関連論文リスト
- Towards Real-World Burst Image Super-Resolution: Benchmark and Method [93.73429028287038]
本稿では,複数のフレームから画像の詳細を忠実に再構成する大規模リアルタイムバースト超解像データセットであるRealBSRを確立する。
また,FBAnet(Federated Burst Affinity Network)を導入し,実世界の画像劣化下での画像間の非自明な画素幅の変位について検討する。
論文 参考訳(メタデータ) (2023-09-09T14:11:37Z) - Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers [3.8831062015253055]
監視画像における構造的特徴およびテクスチャ的特徴の検出を強化するために,Single-Image Super-Resolution (SISR) アプローチを導入する。
提案手法は,サブピクセルの畳み込み層と,光学的文字認識(OCR)モデルを用いて特徴抽出を行うロス関数を含む。
以上の結果から, これらの低解像度合成画像の再構成手法は, 定量化と定性化の両面で, 既存の画像よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-05-27T00:17:19Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - Combining Attention Module and Pixel Shuffle for License Plate
Super-Resolution [3.8831062015253055]
本研究は,低解像度・低画質画像におけるライセンスプレート(LP)再構成に焦点を当てた。
本稿では、注目/変圧器モジュールの概念を拡張したシングルイメージ超解法(SISR)アプローチを提案する。
実験では, 提案手法は, 定量的および定性的に, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-10-30T13:05:07Z) - Learning-Based Dimensionality Reduction for Computing Compact and
Effective Local Feature Descriptors [101.62384271200169]
特徴の形でのイメージパッチの独特な表現は多くのコンピュータビジョンとロボティクスのタスクの重要な構成要素である。
マルチ層パーセプトロン(MLP)を用いて,低次元ながら高品質な記述子を抽出する。
視覚的ローカライゼーション、パッチ検証、画像マッチング、検索など、さまざまなアプリケーションについて検討する。
論文 参考訳(メタデータ) (2022-09-27T17:59:04Z) - Learning Weighting Map for Bit-Depth Expansion within a Rational Range [64.15915577164894]
ビット深化(BDE)は、低ビット深化(LBD)ソースから高ビット深化(HBD)画像を表示する新興技術の1つである。
既存のBDEメソッドは、様々なBDE状況に対して統一的なソリューションを持っていない。
我々は,各画素の重みを求めるためにビット復元ネットワーク(BRNet)を設計し,補充値の比率を合理的範囲内で示す。
論文 参考訳(メタデータ) (2022-04-26T02:27:39Z) - Denoising and Optical and SAR Image Classifications Based on Feature
Extraction and Sparse Representation [0.0]
本稿では,光学画像とSAR画像の分類を識別し,特徴抽出し,比較する手法を提案する。
光画像データは、リモートセンシングの作業員によって、容易に解釈できるため、土地利用と被覆について調査するために使われてきた。
論文 参考訳(メタデータ) (2021-06-03T14:39:30Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Texture image classification based on a pseudo-parabolic diffusion model [0.0]
提案手法は、確立されたベンチマークテクスチャデータベースの分類と、植物種認識の実践的な課題について検証する。
画像の同種領域内では、擬似放物的演算子が、うる限りノイズの多い詳細を滑らかにすることができることで、優れた性能を大いに正当化することができる。
論文 参考訳(メタデータ) (2020-11-14T00:04:07Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。