論文の概要: Motion Vector Extrapolation for Video Object Detection
- arxiv url: http://arxiv.org/abs/2104.08918v1
- Date: Sun, 18 Apr 2021 17:26:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 08:27:34.203108
- Title: Motion Vector Extrapolation for Video Object Detection
- Title(参考訳): 映像物体検出のための動きベクトル外挿
- Authors: Julian True and Naimul Khan
- Abstract要約: MOVEXは、一般的なCPUベースのシステムで低レイテンシのビデオオブジェクト検出を可能にする。
提案手法は,任意の対象検出器のベースライン遅延を著しく低減することを示す。
さらなるレイテンシ低減は、元のレイテンシよりも最大25倍低いもので、最小限の精度で達成できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the continued successes of computationally efficient deep neural
network architectures for video object detection, performance continually
arrives at the great trilemma of speed versus accuracy versus computational
resources (pick two). Current attempts to exploit temporal information in video
data to overcome this trilemma are bottlenecked by the state-of-the-art in
object detection models. We present, a technique which performs video object
detection through the use of off-the-shelf object detectors alongside existing
optical flow based motion estimation techniques in parallel. Through a set of
experiments on the benchmark MOT20 dataset, we demonstrate that our approach
significantly reduces the baseline latency of any given object detector without
sacrificing any accuracy. Further latency reduction, up to 25x lower than the
original latency, can be achieved with minimal accuracy loss. MOVEX enables low
latency video object detection on common CPU based systems, thus allowing for
high performance video object detection beyond the domain of GPU computing. The
code is available at https://github.com/juliantrue/movex.
- Abstract(参考訳): ビデオオブジェクト検出のための計算効率のよいディープニューラルネットワークアーキテクチャの継続的な成功にもかかわらず、パフォーマンスは、計算リソースに対するスピード対精度の大きなトリレンマ(ピック2)に継続的に到達している。
このトリレンマを克服するためにビデオデータの時間的情報を活用する試みは、オブジェクト検出モデルにおける最先端モデルによってボトルネック化されている。
本稿では,既存の光学フローに基づく動き推定技術と並行して,市販の物体検出装置を用いて映像物体検出を行う手法を提案する。
ベンチマークMOT20データセットの一連の実験を通して、我々の手法は、精度を犠牲にすることなく、任意のオブジェクト検出器のベースライン遅延を著しく低減することを示した。
さらに、元のレイテンシよりも最大25倍低い遅延低減は、最小限の精度で達成できる。
MOVEXは、一般的なCPUベースのシステム上で低レイテンシのビデオオブジェクト検出を可能にし、GPUコンピューティングの領域を越えた高性能なビデオオブジェクト検出を可能にする。
コードはhttps://github.com/juliantrue/movexで入手できる。
関連論文リスト
- ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - VideoPose: Estimating 6D object pose from videos [14.210010379733017]
我々は、畳み込みニューラルネットワークを用いて、ビデオから直接オブジェクトのポーズを推定する、単純だが効果的なアルゴリズムを導入する。
提案するネットワークは、トレーニング済みの2Dオブジェクト検出器を入力として、リカレントニューラルネットワークを介して視覚的特徴を集約し、各フレームで予測を行う。
YCB-Videoデータセットの実験的評価から,本手法は最先端のアルゴリズムと同等であることがわかった。
論文 参考訳(メタデータ) (2021-11-20T20:57:45Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Parallel Detection for Efficient Video Analytics at the Edge [5.547133811014004]
ディープニューラルネットワーク(DNN)訓練対象検出器は、エッジでのリアルタイムビデオ分析のためにミッションクリティカルシステムに広くデプロイされている。
ミッションクリティカルエッジサービスにおける一般的なパフォーマンス要件は、エッジデバイス上でのオンラインオブジェクト検出のほぼリアルタイムレイテンシである。
本稿では,エッジシステムにおける高速物体検出のためのマルチモデルマルチデバイス検出並列性を利用して,これらの問題に対処する。
論文 参考訳(メタデータ) (2021-07-27T02:50:46Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
本稿では, ボクセルをベースとした2つの3次元物体検出手法について述べる。
実験の結果,これらの手法は入力点雲が遠距離にあるため,遠距離の小さな物体を検出できないことが確認できた。
この結果から,既存手法の計算のかなりの部分は,検出に寄与しないシーンの位置に着目していることが示唆された。
論文 参考訳(メタデータ) (2021-05-21T12:40:59Z) - FMODetect: Robust Detection and Trajectory Estimation of Fast Moving
Objects [110.29738581961955]
高速移動物体の検出と軌道推定のための最初の学習ベースアプローチを提案する。
提案手法は, 高速移動物体を軌道への切り離された距離関数として検出する。
シャープな外観推定のために,エネルギー最小化に基づくデブロワーリングを提案する。
論文 参考訳(メタデータ) (2020-12-15T11:05:34Z) - Robust and efficient post-processing for video object detection [9.669942356088377]
この研究は、従来の後処理メソッドの制限を克服する、新しい後処理パイプラインを導入している。
本手法は,特に高速移動物体に関する最先端の映像検出器の結果を改善する。
そして、YOLOのような効率的な静止画像検出器に適用することで、より計算集約的な検出器に匹敵する結果が得られる。
論文 参考訳(メタデータ) (2020-09-23T10:47:24Z) - Joint Detection and Tracking in Videos with Identification Features [36.55599286568541]
本稿では,ビデオ検出,追跡,再識別機能の最初の共同最適化を提案する。
提案手法はMOTの最先端に到達し,オンライントラッカーにおけるUA-DETRAC'18追跡課題のうち,第1位,第3位にランクインした。
論文 参考訳(メタデータ) (2020-05-21T21:06:40Z) - Streaming Object Detection for 3-D Point Clouds [29.465873948076766]
LiDARは、多くの既存の知覚システムに通知する顕著な感覚モダリティを提供する。
ポイントクラウドデータに基づく知覚システムのレイテンシは、完全なローテーションスキャンの時間量によって支配される。
我々は、LiDARデータをそのネイティブストリーミング定式化で操作することで、自動運転オブジェクト検出にいくつかの利点があることを示す。
論文 参考訳(メタデータ) (2020-05-04T21:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。